import torch from peft import PeftModel, PeftConfig from transformers import AutoModelForCausalLM, AutoTokenizer peft_model_id = "ambrosemcduffy/bloom-1b7-lora-ads" config = PeftConfig.from_pretrained(peft_model_id) base_model = AutoModelForCausalLM.from_pretrained( config.base_model_name_or_path, return_dict=True, load_in_8bit=False, device_map="auto", ) tokenizer = AutoTokenizer.from_pretrained(config.base_model_name_or_path) # Load the Lora model model = PeftModel.from_pretrained(base_model, peft_model_id) def make_inference(question): input_text = "### This is your question {}\n".format(question) batch = tokenizer(input_text, return_tensors='pt') with torch.cuda.amp.autocast(): output_tokens = model.generate(**batch, max_length=50, num_return_sequences=1) return tokenizer.decode(output_tokens[0], skip_special_tokens=True) if __name__ == "__main__": import gradio as gr gr.Interface( make_inference, gr.inputs.Textbox(lines=2, label="Question"), gr.outputs.Textbox(label="Answer"), title="BlackQA", description="Generated Text of Black heros", ).launch()