juliaferraioli commited on
Commit
29ec71a
Β·
verified Β·
1 Parent(s): fe13787

Add related HF orgs to the readme

Browse files

- minor copy edits
- use html instead of markdown for banner

Files changed (1) hide show
  1. README.md +11 -4
README.md CHANGED
@@ -27,14 +27,13 @@ pinned: false
27
  display: flex;
28
  }
29
  </style>
30
-
31
- ![AWS Banner](images/logo.png)
32
 
33
  _**Innovating with machine learning on AWS**_
34
 
35
  On AWS, you can access performant infrastructure, deployment resources, data governance solutions, and deep learning containers (DLCs) with optimized open source frameworks, so that you can focus on your machine learning tasks.
36
 
37
- ## AI/ML at AWS
38
 
39
  AWS offers a comprehensive suite of AI/ML tools and services that cater to every stage of the machine learning lifecycle. From model development and training to deployment and inference, AWS provides cutting-edge solutions like Amazon SageMaker with its JumpStart feature for end-to-end development and deployment of models, Amazon Bedrock for building generative AI applications, custom AI accelerator chips such as AWS Trainium for training and AWS Inferentia for inference, and pre-configured environments to streamline your ML workflows. Additionally, you can explore the Registry of Open Data to discover, access, and utilize diverse datasets for your AI/ML projects. Whether you're working on large language models, generative AI, computer vision, time-series forecasting, or natural language processing, scaling your projects on AWS is easy.
40
 
@@ -95,13 +94,21 @@ Stay connected with the latest AWS AI/ML and open source developments:
95
  <li><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 640 512" class="icon"><!--!Font Awesome Free 6.7.1 by @fontawesome - https://fontawesome.com License - https://fontawesome.com/license/free Copyright 2024 Fonticons, Inc.--><path fill="currentColor" d="M175 389.4c-9.8 16-15 34.3-15 53.1c-10 3.5-20.8 5.5-32 5.5c-53 0-96-43-96-96L32 64C14.3 64 0 49.7 0 32S14.3 0 32 0L96 0l64 0 64 0c17.7 0 32 14.3 32 32s-14.3 32-32 32l0 245.9-49 79.6zM96 64l0 96 64 0 0-96L96 64zM352 0L480 0l32 0c17.7 0 32 14.3 32 32s-14.3 32-32 32l0 150.9L629.7 406.2c6.7 10.9 10.3 23.5 10.3 36.4c0 38.3-31.1 69.4-69.4 69.4l-309.2 0c-38.3 0-69.4-31.1-69.4-69.4c0-12.8 3.6-25.4 10.3-36.4L320 214.9 320 64c-17.7 0-32-14.3-32-32s14.3-32 32-32l32 0zm32 64l0 160c0 5.9-1.6 11.7-4.7 16.8L330.5 320l171 0-48.8-79.2c-3.1-5-4.7-10.8-4.7-16.8l0-160-64 0z"/></svg><a href="https://aws.amazon.com/ai/learn/machine-learning-specialist/?trk=36edcf21-df13-41bb-b439-4470e02a62ab&sc_channel=el">ML Specialist Training & Resources</a></li>
96
  </ul>
97
  </div>
 
 
 
 
 
 
 
 
98
  </div>
99
 
100
  Let's innovate together! πŸŽ‰πŸš€
101
 
102
  ---
103
 
104
- <div class="grid lg:grid-cols-3 gap-x-4 gap-y-7 p2">
105
  <div class="col-span-1 p2">
106
  <a href="https://aws.amazon.com/blogs/machine-learning/llm-experimentation-at-scale-using-amazon-sagemaker-pipelines-and-mlflow/">
107
  <img class="rotating-content" src="images/thumbnails/ml-llm-selection.png" alt="LLM evaluation and selection journey"/>
 
27
  display: flex;
28
  }
29
  </style>
30
+ <img src="images/logo.png" alt="AWS Banner"/>
 
31
 
32
  _**Innovating with machine learning on AWS**_
33
 
34
  On AWS, you can access performant infrastructure, deployment resources, data governance solutions, and deep learning containers (DLCs) with optimized open source frameworks, so that you can focus on your machine learning tasks.
35
 
36
+ ## Build and Scale AI/ML on AWS
37
 
38
  AWS offers a comprehensive suite of AI/ML tools and services that cater to every stage of the machine learning lifecycle. From model development and training to deployment and inference, AWS provides cutting-edge solutions like Amazon SageMaker with its JumpStart feature for end-to-end development and deployment of models, Amazon Bedrock for building generative AI applications, custom AI accelerator chips such as AWS Trainium for training and AWS Inferentia for inference, and pre-configured environments to streamline your ML workflows. Additionally, you can explore the Registry of Open Data to discover, access, and utilize diverse datasets for your AI/ML projects. Whether you're working on large language models, generative AI, computer vision, time-series forecasting, or natural language processing, scaling your projects on AWS is easy.
39
 
 
94
  <li><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 640 512" class="icon"><!--!Font Awesome Free 6.7.1 by @fontawesome - https://fontawesome.com License - https://fontawesome.com/license/free Copyright 2024 Fonticons, Inc.--><path fill="currentColor" d="M175 389.4c-9.8 16-15 34.3-15 53.1c-10 3.5-20.8 5.5-32 5.5c-53 0-96-43-96-96L32 64C14.3 64 0 49.7 0 32S14.3 0 32 0L96 0l64 0 64 0c17.7 0 32 14.3 32 32s-14.3 32-32 32l0 245.9-49 79.6zM96 64l0 96 64 0 0-96L96 64zM352 0L480 0l32 0c17.7 0 32 14.3 32 32s-14.3 32-32 32l0 150.9L629.7 406.2c6.7 10.9 10.3 23.5 10.3 36.4c0 38.3-31.1 69.4-69.4 69.4l-309.2 0c-38.3 0-69.4-31.1-69.4-69.4c0-12.8 3.6-25.4 10.3-36.4L320 214.9 320 64c-17.7 0-32-14.3-32-32s14.3-32 32-32l32 0zm32 64l0 160c0 5.9-1.6 11.7-4.7 16.8L330.5 320l171 0-48.8-79.2c-3.1-5-4.7-10.8-4.7-16.8l0-160-64 0z"/></svg><a href="https://aws.amazon.com/ai/learn/machine-learning-specialist/?trk=36edcf21-df13-41bb-b439-4470e02a62ab&sc_channel=el">ML Specialist Training & Resources</a></li>
95
  </ul>
96
  </div>
97
+ <div class="col-span-2 p2">
98
+ <p>Check out these other Amazon-run Hugging Face organizations</p>
99
+ <ul class="social">
100
+ <li><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon"><!--!Font Awesome Free 6.7.1 by @fontawesome - https://fontawesome.com License - https://fontawesome.com/license/free Copyright 2024 Fonticons, Inc.--><path fill="currentColor" d="M208.5 62.3l28.1-36.9C248.8 9.4 267.8 0 288 0c28.5 0 53.6 18.7 61.8 46l17.8 59.4c10.3 34.4 36.1 62 69.8 74.6l39.8 14.9c20.9 7.9 34.8 27.9 34.8 50.2c0 16.9-7.9 32.8-21.5 42.9l-67.3 50.5c-24.3 18.2-37.2 47.9-33.8 78.1l2.5 22.7c4.3 38.7-26 72.6-65 72.6c-14.8 0-29.3-5.1-40.8-14.3l-55.4-44.3c-4.5-3.6-9.3-6.7-14.5-9.2c-15.8-7.9-33.7-10.4-51-7.3L82.4 451.9C47.8 458.2 16 431.6 16 396.5c0-13.2 4.7-26 13.1-36.2l11.2-13.4c14.6-17.4 22.6-39.4 22.6-62.1c0-18.8-5.5-37.2-15.8-53L8.8 173.5C3.1 164.7 0 154.4 0 143.9c0-33.4 30.1-58.8 63-53.2l51.3 8.7c35.9 6.1 72.2-8.2 94.2-37.1z"/></svg><a href="https://huggingface.co/autogluon">AutoGluon</a></li>
101
+ <li><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon"><!--!Font Awesome Free 6.7.1 by @fontawesome - https://fontawesome.com License - https://fontawesome.com/license/free Copyright 2024 Fonticons, Inc.--><path fill="currentColor" d="M176 24c0-13.3-10.7-24-24-24s-24 10.7-24 24l0 40c-35.3 0-64 28.7-64 64l-40 0c-13.3 0-24 10.7-24 24s10.7 24 24 24l40 0 0 56-40 0c-13.3 0-24 10.7-24 24s10.7 24 24 24l40 0 0 56-40 0c-13.3 0-24 10.7-24 24s10.7 24 24 24l40 0c0 35.3 28.7 64 64 64l0 40c0 13.3 10.7 24 24 24s24-10.7 24-24l0-40 56 0 0 40c0 13.3 10.7 24 24 24s24-10.7 24-24l0-40 56 0 0 40c0 13.3 10.7 24 24 24s24-10.7 24-24l0-40c35.3 0 64-28.7 64-64l40 0c13.3 0 24-10.7 24-24s-10.7-24-24-24l-40 0 0-56 40 0c13.3 0 24-10.7 24-24s-10.7-24-24-24l-40 0 0-56 40 0c13.3 0 24-10.7 24-24s-10.7-24-24-24l-40 0c0-35.3-28.7-64-64-64l0-40c0-13.3-10.7-24-24-24s-24 10.7-24 24l0 40-56 0 0-40c0-13.3-10.7-24-24-24s-24 10.7-24 24l0 40-56 0 0-40zM160 128l192 0c17.7 0 32 14.3 32 32l0 192c0 17.7-14.3 32-32 32l-192 0c-17.7 0-32-14.3-32-32l0-192c0-17.7 14.3-32 32-32zm192 32l-192 0 0 192 192 0 0-192z"/></svg><a href="https://huggingface.co/aws-neuron">AWS Inferentia and Trainium</a></li>
102
+ <li><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 640 512" class="icon"><!--!Font Awesome Free 6.7.1 by @fontawesome - https://fontawesome.com License - https://fontawesome.com/license/free Copyright 2024 Fonticons, Inc.--><path fill="currentColor" d="M175 389.4c-9.8 16-15 34.3-15 53.1c-10 3.5-20.8 5.5-32 5.5c-53 0-96-43-96-96L32 64C14.3 64 0 49.7 0 32S14.3 0 32 0L96 0l64 0 64 0c17.7 0 32 14.3 32 32s-14.3 32-32 32l0 245.9-49 79.6zM96 64l0 96 64 0 0-96L96 64zM352 0L480 0l32 0c17.7 0 32 14.3 32 32s-14.3 32-32 32l0 150.9L629.7 406.2c6.7 10.9 10.3 23.5 10.3 36.4c0 38.3-31.1 69.4-69.4 69.4l-309.2 0c-38.3 0-69.4-31.1-69.4-69.4c0-12.8 3.6-25.4 10.3-36.4L320 214.9 320 64c-17.7 0-32-14.3-32-32s14.3-32 32-32l32 0zm32 64l0 160c0 5.9-1.6 11.7-4.7 16.8L330.5 320l171 0-48.8-79.2c-3.1-5-4.7-10.8-4.7-16.8l0-160-64 0z"/></svg><a href="https://huggingface.co/AmazonScience">Amazon Science</a></li>
103
+ </ul>
104
+ </div>
105
  </div>
106
 
107
  Let's innovate together! πŸŽ‰πŸš€
108
 
109
  ---
110
 
111
+ <div class="grid lg:grid-cols-3 gap-x-4 gap-y-2 p2">
112
  <div class="col-span-1 p2">
113
  <a href="https://aws.amazon.com/blogs/machine-learning/llm-experimentation-at-scale-using-amazon-sagemaker-pipelines-and-mlflow/">
114
  <img class="rotating-content" src="images/thumbnails/ml-llm-selection.png" alt="LLM evaluation and selection journey"/>