Spaces:
Running
Running
juliaferraioli
commited on
Add related HF orgs to the readme
Browse files- minor copy edits
- use html instead of markdown for banner
README.md
CHANGED
@@ -27,14 +27,13 @@ pinned: false
|
|
27 |
display: flex;
|
28 |
}
|
29 |
</style>
|
30 |
-
|
31 |
-
![AWS Banner](images/logo.png)
|
32 |
|
33 |
_**Innovating with machine learning on AWS**_
|
34 |
|
35 |
On AWS, you can access performant infrastructure, deployment resources, data governance solutions, and deep learning containers (DLCs) with optimized open source frameworks, so that you can focus on your machine learning tasks.
|
36 |
|
37 |
-
## AI/ML
|
38 |
|
39 |
AWS offers a comprehensive suite of AI/ML tools and services that cater to every stage of the machine learning lifecycle. From model development and training to deployment and inference, AWS provides cutting-edge solutions like Amazon SageMaker with its JumpStart feature for end-to-end development and deployment of models, Amazon Bedrock for building generative AI applications, custom AI accelerator chips such as AWS Trainium for training and AWS Inferentia for inference, and pre-configured environments to streamline your ML workflows. Additionally, you can explore the Registry of Open Data to discover, access, and utilize diverse datasets for your AI/ML projects. Whether you're working on large language models, generative AI, computer vision, time-series forecasting, or natural language processing, scaling your projects on AWS is easy.
|
40 |
|
@@ -95,13 +94,21 @@ Stay connected with the latest AWS AI/ML and open source developments:
|
|
95 |
<li><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 640 512" class="icon"><!--!Font Awesome Free 6.7.1 by @fontawesome - https://fontawesome.com License - https://fontawesome.com/license/free Copyright 2024 Fonticons, Inc.--><path fill="currentColor" d="M175 389.4c-9.8 16-15 34.3-15 53.1c-10 3.5-20.8 5.5-32 5.5c-53 0-96-43-96-96L32 64C14.3 64 0 49.7 0 32S14.3 0 32 0L96 0l64 0 64 0c17.7 0 32 14.3 32 32s-14.3 32-32 32l0 245.9-49 79.6zM96 64l0 96 64 0 0-96L96 64zM352 0L480 0l32 0c17.7 0 32 14.3 32 32s-14.3 32-32 32l0 150.9L629.7 406.2c6.7 10.9 10.3 23.5 10.3 36.4c0 38.3-31.1 69.4-69.4 69.4l-309.2 0c-38.3 0-69.4-31.1-69.4-69.4c0-12.8 3.6-25.4 10.3-36.4L320 214.9 320 64c-17.7 0-32-14.3-32-32s14.3-32 32-32l32 0zm32 64l0 160c0 5.9-1.6 11.7-4.7 16.8L330.5 320l171 0-48.8-79.2c-3.1-5-4.7-10.8-4.7-16.8l0-160-64 0z"/></svg><a href="https://aws.amazon.com/ai/learn/machine-learning-specialist/?trk=36edcf21-df13-41bb-b439-4470e02a62ab&sc_channel=el">ML Specialist Training & Resources</a></li>
|
96 |
</ul>
|
97 |
</div>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
98 |
</div>
|
99 |
|
100 |
Let's innovate together! ππ
|
101 |
|
102 |
---
|
103 |
|
104 |
-
<div class="grid lg:grid-cols-3 gap-x-4 gap-y-
|
105 |
<div class="col-span-1 p2">
|
106 |
<a href="https://aws.amazon.com/blogs/machine-learning/llm-experimentation-at-scale-using-amazon-sagemaker-pipelines-and-mlflow/">
|
107 |
<img class="rotating-content" src="images/thumbnails/ml-llm-selection.png" alt="LLM evaluation and selection journey"/>
|
|
|
27 |
display: flex;
|
28 |
}
|
29 |
</style>
|
30 |
+
<img src="images/logo.png" alt="AWS Banner"/>
|
|
|
31 |
|
32 |
_**Innovating with machine learning on AWS**_
|
33 |
|
34 |
On AWS, you can access performant infrastructure, deployment resources, data governance solutions, and deep learning containers (DLCs) with optimized open source frameworks, so that you can focus on your machine learning tasks.
|
35 |
|
36 |
+
## Build and Scale AI/ML on AWS
|
37 |
|
38 |
AWS offers a comprehensive suite of AI/ML tools and services that cater to every stage of the machine learning lifecycle. From model development and training to deployment and inference, AWS provides cutting-edge solutions like Amazon SageMaker with its JumpStart feature for end-to-end development and deployment of models, Amazon Bedrock for building generative AI applications, custom AI accelerator chips such as AWS Trainium for training and AWS Inferentia for inference, and pre-configured environments to streamline your ML workflows. Additionally, you can explore the Registry of Open Data to discover, access, and utilize diverse datasets for your AI/ML projects. Whether you're working on large language models, generative AI, computer vision, time-series forecasting, or natural language processing, scaling your projects on AWS is easy.
|
39 |
|
|
|
94 |
<li><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 640 512" class="icon"><!--!Font Awesome Free 6.7.1 by @fontawesome - https://fontawesome.com License - https://fontawesome.com/license/free Copyright 2024 Fonticons, Inc.--><path fill="currentColor" d="M175 389.4c-9.8 16-15 34.3-15 53.1c-10 3.5-20.8 5.5-32 5.5c-53 0-96-43-96-96L32 64C14.3 64 0 49.7 0 32S14.3 0 32 0L96 0l64 0 64 0c17.7 0 32 14.3 32 32s-14.3 32-32 32l0 245.9-49 79.6zM96 64l0 96 64 0 0-96L96 64zM352 0L480 0l32 0c17.7 0 32 14.3 32 32s-14.3 32-32 32l0 150.9L629.7 406.2c6.7 10.9 10.3 23.5 10.3 36.4c0 38.3-31.1 69.4-69.4 69.4l-309.2 0c-38.3 0-69.4-31.1-69.4-69.4c0-12.8 3.6-25.4 10.3-36.4L320 214.9 320 64c-17.7 0-32-14.3-32-32s14.3-32 32-32l32 0zm32 64l0 160c0 5.9-1.6 11.7-4.7 16.8L330.5 320l171 0-48.8-79.2c-3.1-5-4.7-10.8-4.7-16.8l0-160-64 0z"/></svg><a href="https://aws.amazon.com/ai/learn/machine-learning-specialist/?trk=36edcf21-df13-41bb-b439-4470e02a62ab&sc_channel=el">ML Specialist Training & Resources</a></li>
|
95 |
</ul>
|
96 |
</div>
|
97 |
+
<div class="col-span-2 p2">
|
98 |
+
<p>Check out these other Amazon-run Hugging Face organizations</p>
|
99 |
+
<ul class="social">
|
100 |
+
<li><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon"><!--!Font Awesome Free 6.7.1 by @fontawesome - https://fontawesome.com License - https://fontawesome.com/license/free Copyright 2024 Fonticons, Inc.--><path fill="currentColor" d="M208.5 62.3l28.1-36.9C248.8 9.4 267.8 0 288 0c28.5 0 53.6 18.7 61.8 46l17.8 59.4c10.3 34.4 36.1 62 69.8 74.6l39.8 14.9c20.9 7.9 34.8 27.9 34.8 50.2c0 16.9-7.9 32.8-21.5 42.9l-67.3 50.5c-24.3 18.2-37.2 47.9-33.8 78.1l2.5 22.7c4.3 38.7-26 72.6-65 72.6c-14.8 0-29.3-5.1-40.8-14.3l-55.4-44.3c-4.5-3.6-9.3-6.7-14.5-9.2c-15.8-7.9-33.7-10.4-51-7.3L82.4 451.9C47.8 458.2 16 431.6 16 396.5c0-13.2 4.7-26 13.1-36.2l11.2-13.4c14.6-17.4 22.6-39.4 22.6-62.1c0-18.8-5.5-37.2-15.8-53L8.8 173.5C3.1 164.7 0 154.4 0 143.9c0-33.4 30.1-58.8 63-53.2l51.3 8.7c35.9 6.1 72.2-8.2 94.2-37.1z"/></svg><a href="https://huggingface.co/autogluon">AutoGluon</a></li>
|
101 |
+
<li><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon"><!--!Font Awesome Free 6.7.1 by @fontawesome - https://fontawesome.com License - https://fontawesome.com/license/free Copyright 2024 Fonticons, Inc.--><path fill="currentColor" d="M176 24c0-13.3-10.7-24-24-24s-24 10.7-24 24l0 40c-35.3 0-64 28.7-64 64l-40 0c-13.3 0-24 10.7-24 24s10.7 24 24 24l40 0 0 56-40 0c-13.3 0-24 10.7-24 24s10.7 24 24 24l40 0 0 56-40 0c-13.3 0-24 10.7-24 24s10.7 24 24 24l40 0c0 35.3 28.7 64 64 64l0 40c0 13.3 10.7 24 24 24s24-10.7 24-24l0-40 56 0 0 40c0 13.3 10.7 24 24 24s24-10.7 24-24l0-40 56 0 0 40c0 13.3 10.7 24 24 24s24-10.7 24-24l0-40c35.3 0 64-28.7 64-64l40 0c13.3 0 24-10.7 24-24s-10.7-24-24-24l-40 0 0-56 40 0c13.3 0 24-10.7 24-24s-10.7-24-24-24l-40 0 0-56 40 0c13.3 0 24-10.7 24-24s-10.7-24-24-24l-40 0c0-35.3-28.7-64-64-64l0-40c0-13.3-10.7-24-24-24s-24 10.7-24 24l0 40-56 0 0-40c0-13.3-10.7-24-24-24s-24 10.7-24 24l0 40-56 0 0-40zM160 128l192 0c17.7 0 32 14.3 32 32l0 192c0 17.7-14.3 32-32 32l-192 0c-17.7 0-32-14.3-32-32l0-192c0-17.7 14.3-32 32-32zm192 32l-192 0 0 192 192 0 0-192z"/></svg><a href="https://huggingface.co/aws-neuron">AWS Inferentia and Trainium</a></li>
|
102 |
+
<li><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 640 512" class="icon"><!--!Font Awesome Free 6.7.1 by @fontawesome - https://fontawesome.com License - https://fontawesome.com/license/free Copyright 2024 Fonticons, Inc.--><path fill="currentColor" d="M175 389.4c-9.8 16-15 34.3-15 53.1c-10 3.5-20.8 5.5-32 5.5c-53 0-96-43-96-96L32 64C14.3 64 0 49.7 0 32S14.3 0 32 0L96 0l64 0 64 0c17.7 0 32 14.3 32 32s-14.3 32-32 32l0 245.9-49 79.6zM96 64l0 96 64 0 0-96L96 64zM352 0L480 0l32 0c17.7 0 32 14.3 32 32s-14.3 32-32 32l0 150.9L629.7 406.2c6.7 10.9 10.3 23.5 10.3 36.4c0 38.3-31.1 69.4-69.4 69.4l-309.2 0c-38.3 0-69.4-31.1-69.4-69.4c0-12.8 3.6-25.4 10.3-36.4L320 214.9 320 64c-17.7 0-32-14.3-32-32s14.3-32 32-32l32 0zm32 64l0 160c0 5.9-1.6 11.7-4.7 16.8L330.5 320l171 0-48.8-79.2c-3.1-5-4.7-10.8-4.7-16.8l0-160-64 0z"/></svg><a href="https://huggingface.co/AmazonScience">Amazon Science</a></li>
|
103 |
+
</ul>
|
104 |
+
</div>
|
105 |
</div>
|
106 |
|
107 |
Let's innovate together! ππ
|
108 |
|
109 |
---
|
110 |
|
111 |
+
<div class="grid lg:grid-cols-3 gap-x-4 gap-y-2 p2">
|
112 |
<div class="col-span-1 p2">
|
113 |
<a href="https://aws.amazon.com/blogs/machine-learning/llm-experimentation-at-scale-using-amazon-sagemaker-pipelines-and-mlflow/">
|
114 |
<img class="rotating-content" src="images/thumbnails/ml-llm-selection.png" alt="LLM evaluation and selection journey"/>
|