[email protected]
commited on
Commit
·
8ebacce
1
Parent(s):
6fc758e
added_model
Browse files
train.py
CHANGED
@@ -1,80 +1,110 @@
|
|
1 |
from datasets import load_dataset, Dataset
|
2 |
-
from transformers import AutoTokenizer, AutoModelForSequenceClassification, TrainingArguments, Trainer
|
3 |
from sklearn.model_selection import train_test_split
|
4 |
-
import
|
5 |
-
|
6 |
-
|
7 |
-
|
8 |
-
|
9 |
-
# Step 2: Convert to Pandas and Split
|
10 |
-
df = dataset['train'].to_pandas()
|
11 |
-
train_df, test_df = train_test_split(df, test_size=0.2, random_state=42)
|
12 |
-
|
13 |
-
# Step 3: Convert Back to Hugging Face Dataset
|
14 |
-
train_dataset = Dataset.from_pandas(train_df, preserve_index=False)
|
15 |
-
test_dataset = Dataset.from_pandas(test_df, preserve_index=False)
|
16 |
-
|
17 |
-
# Step 4: Tokenizer Initialization
|
18 |
-
tokenizer = AutoTokenizer.from_pretrained("bert-large-uncased")
|
19 |
-
|
20 |
-
# Step 5: Preprocess Function
|
21 |
-
def preprocess_data(examples):
|
22 |
-
# Use the correct column name for the text data
|
23 |
-
return tokenizer(examples['text'], truncation=True, padding='max_length', max_length=512)
|
24 |
-
|
25 |
-
# Step 6: Tokenize the Dataset
|
26 |
-
tokenized_train = train_dataset.map(preprocess_data, batched=True)
|
27 |
-
tokenized_test = test_dataset.map(preprocess_data, batched=True)
|
28 |
-
|
29 |
-
# Remove unused columns and set format for PyTorch
|
30 |
-
tokenized_train = tokenized_train.remove_columns(['text'])
|
31 |
-
tokenized_test = tokenized_test.remove_columns(['text'])
|
32 |
-
tokenized_train.set_format("torch")
|
33 |
-
tokenized_test.set_format("torch")
|
34 |
-
|
35 |
-
# Step 7: Model Initialization
|
36 |
-
model = AutoModelForSequenceClassification.from_pretrained("bert-large-uncased", num_labels=2)
|
37 |
-
|
38 |
-
# Step 8: Training Arguments
|
39 |
-
training_args = TrainingArguments(
|
40 |
-
evaluation_strategy="epoch",
|
41 |
-
learning_rate=2e-5,
|
42 |
-
per_device_train_batch_size=16,
|
43 |
-
per_device_eval_batch_size=16,
|
44 |
-
num_train_epochs=3,
|
45 |
-
weight_decay=0.01,
|
46 |
-
save_strategy="epoch",
|
47 |
-
logging_steps=10,
|
48 |
-
)
|
49 |
-
|
50 |
-
# Step 9: Trainer Setup
|
51 |
-
trainer = Trainer(
|
52 |
-
model=model,
|
53 |
-
args=training_args,
|
54 |
-
train_dataset=tokenized_train,
|
55 |
-
eval_dataset=tokenized_test,
|
56 |
)
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
from datasets import load_dataset, Dataset
|
|
|
2 |
from sklearn.model_selection import train_test_split
|
3 |
+
from transformers import (
|
4 |
+
BertTokenizer,
|
5 |
+
AutoModelForSequenceClassification,
|
6 |
+
Trainer,
|
7 |
+
TrainingArguments
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
8 |
)
|
9 |
+
import torch
|
10 |
+
from sklearn.metrics import accuracy_score, precision_recall_fscore_support
|
11 |
+
import numpy as np
|
12 |
+
|
13 |
+
|
14 |
+
def compute_metrics(eval_pred):
|
15 |
+
logits, labels = eval_pred
|
16 |
+
preds = np.argmax(logits, axis=-1)
|
17 |
+
precision, recall, f1, _ = precision_recall_fscore_support(labels, preds, average='binary')
|
18 |
+
acc = accuracy_score(labels, preds)
|
19 |
+
return {
|
20 |
+
'accuracy': acc,
|
21 |
+
'f1': f1,
|
22 |
+
'precision': precision,
|
23 |
+
'recall': recall
|
24 |
+
}
|
25 |
+
|
26 |
+
|
27 |
+
def main():
|
28 |
+
# Check for GPU availability
|
29 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
30 |
+
print(f"Using device: {device}")
|
31 |
+
|
32 |
+
# Load and prepare dataset
|
33 |
+
print("Loading dataset...")
|
34 |
+
dataset = load_dataset("ealvaradob/phishing-dataset", "combined_reduced", trust_remote_code=True)
|
35 |
+
df = dataset['train'].to_pandas()
|
36 |
+
|
37 |
+
# Split dataset
|
38 |
+
train_df, test_df = train_test_split(df, test_size=0.2, random_state=42)
|
39 |
+
train_dataset = Dataset.from_pandas(train_df, preserve_index=False)
|
40 |
+
test_dataset = Dataset.from_pandas(test_df, preserve_index=False)
|
41 |
+
|
42 |
+
# Initialize tokenizer and model
|
43 |
+
print("Initializing model...")
|
44 |
+
tokenizer = BertTokenizer.from_pretrained('bert-large-uncased')
|
45 |
+
model = AutoModelForSequenceClassification.from_pretrained(
|
46 |
+
'bert-large-uncased',
|
47 |
+
num_labels=2
|
48 |
+
).to(device)
|
49 |
+
|
50 |
+
def tokenize_function(examples):
|
51 |
+
return tokenizer(examples["text"], padding="max_length", truncation=True, max_length=128)
|
52 |
+
|
53 |
+
# Tokenize datasets
|
54 |
+
print("Tokenizing datasets...")
|
55 |
+
train_dataset = train_dataset.map(tokenize_function, batched=True)
|
56 |
+
test_dataset = test_dataset.map(tokenize_function, batched=True)
|
57 |
+
|
58 |
+
# Convert to PyTorch datasets
|
59 |
+
train_dataset.set_format(type="torch", columns=["input_ids", "attention_mask", "label"])
|
60 |
+
test_dataset.set_format(type="torch", columns=["input_ids", "attention_mask", "label"])
|
61 |
+
|
62 |
+
# Set up training arguments
|
63 |
+
epochs = 3
|
64 |
+
batch_size = 64
|
65 |
+
training_args = TrainingArguments(
|
66 |
+
output_dir="./results",
|
67 |
+
evaluation_strategy="epoch",
|
68 |
+
save_strategy="epoch",
|
69 |
+
learning_rate=5e-5,
|
70 |
+
per_device_train_batch_size=batch_size,
|
71 |
+
per_device_eval_batch_size=batch_size,
|
72 |
+
num_train_epochs=epochs,
|
73 |
+
weight_decay=0.01,
|
74 |
+
logging_dir='./logs',
|
75 |
+
logging_steps=50,
|
76 |
+
load_best_model_at_end=True,
|
77 |
+
metric_for_best_model="accuracy"
|
78 |
+
)
|
79 |
+
|
80 |
+
# Define Trainer
|
81 |
+
trainer = Trainer(
|
82 |
+
model=model,
|
83 |
+
args=training_args,
|
84 |
+
train_dataset=train_dataset,
|
85 |
+
eval_dataset=test_dataset,
|
86 |
+
tokenizer=tokenizer,
|
87 |
+
compute_metrics=compute_metrics
|
88 |
+
)
|
89 |
+
|
90 |
+
# Train model
|
91 |
+
print("Starting training...")
|
92 |
+
trainer.train()
|
93 |
+
|
94 |
+
# Evaluate the model
|
95 |
+
print("Evaluating model...")
|
96 |
+
eval_results = trainer.evaluate()
|
97 |
+
print(eval_results)
|
98 |
+
|
99 |
+
# Save the model and tokenizer
|
100 |
+
print("Saving model...")
|
101 |
+
model_path = "./phishing_model"
|
102 |
+
model.save_pretrained(model_path)
|
103 |
+
tokenizer.save_pretrained(model_path)
|
104 |
+
print(f"Model and tokenizer saved to {model_path}")
|
105 |
+
|
106 |
+
print("Training completed and model saved!")
|
107 |
+
|
108 |
+
|
109 |
+
if __name__ == "__main__":
|
110 |
+
main()
|