gokaygokay commited on
Commit
14ee7bd
Β·
verified Β·
1 Parent(s): c93bbf7

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +12 -7
app.py CHANGED
@@ -191,7 +191,12 @@ def gradio_process_image(input_image, resolution, num_inference_steps, strength,
191
  print("Running inference...")
192
  result = lazy_pipe(**options).images[0]
193
  print("Image processing completed successfully")
194
- return result
 
 
 
 
 
195
 
196
  title = """<h1 align="center">Image Upscaler with Tile Controlnet</h1>
197
  <p align="center">The main ideas come from</p>
@@ -208,7 +213,7 @@ with gr.Blocks() as demo:
208
  input_image = gr.Image(type="pil", label="Input Image")
209
  run_button = gr.Button("Enhance Image")
210
  with gr.Column():
211
- output_image = gr.Image(type="pil", label="Enhanced Image")
212
  with gr.Accordion("Advanced Options", open=False):
213
  resolution = gr.Slider(minimum=256, maximum=2048, value=512, step=256, label="Resolution")
214
  num_inference_steps = gr.Slider(minimum=1, maximum=50, value=20, step=1, label="Number of Inference Steps")
@@ -216,6 +221,10 @@ with gr.Blocks() as demo:
216
  hdr = gr.Slider(minimum=0, maximum=1, value=0, step=0.1, label="HDR Effect")
217
  guidance_scale = gr.Slider(minimum=0, maximum=20, value=3, step=0.5, label="Guidance Scale")
218
 
 
 
 
 
219
  # Add examples with all required inputs
220
  gr.Examples(
221
  examples=[
@@ -224,13 +233,9 @@ with gr.Blocks() as demo:
224
  ["image3.png", 512, 20, 0.4, 0, 3],
225
  ],
226
  inputs=[input_image, resolution, num_inference_steps, strength, hdr, guidance_scale],
227
- outputs=[output_image],
228
  fn=gradio_process_image,
229
  cache_examples=True,
230
  )
231
 
232
- run_button.click(fn=gradio_process_image,
233
- inputs=[input_image, resolution, num_inference_steps, strength, hdr, guidance_scale],
234
- outputs=output_image)
235
-
236
  demo.launch(share=True)
 
191
  print("Running inference...")
192
  result = lazy_pipe(**options).images[0]
193
  print("Image processing completed successfully")
194
+
195
+ # Convert input_image and result to numpy arrays
196
+ input_array = np.array(input_image)
197
+ result_array = np.array(result)
198
+
199
+ return [input_array, result_array]
200
 
201
  title = """<h1 align="center">Image Upscaler with Tile Controlnet</h1>
202
  <p align="center">The main ideas come from</p>
 
213
  input_image = gr.Image(type="pil", label="Input Image")
214
  run_button = gr.Button("Enhance Image")
215
  with gr.Column():
216
+ output_slider = ImageSlider(label="Before / After", type="numpy")
217
  with gr.Accordion("Advanced Options", open=False):
218
  resolution = gr.Slider(minimum=256, maximum=2048, value=512, step=256, label="Resolution")
219
  num_inference_steps = gr.Slider(minimum=1, maximum=50, value=20, step=1, label="Number of Inference Steps")
 
221
  hdr = gr.Slider(minimum=0, maximum=1, value=0, step=0.1, label="HDR Effect")
222
  guidance_scale = gr.Slider(minimum=0, maximum=20, value=3, step=0.5, label="Guidance Scale")
223
 
224
+ run_button.click(fn=gradio_process_image,
225
+ inputs=[input_image, resolution, num_inference_steps, strength, hdr, guidance_scale],
226
+ outputs=output_slider)
227
+
228
  # Add examples with all required inputs
229
  gr.Examples(
230
  examples=[
 
233
  ["image3.png", 512, 20, 0.4, 0, 3],
234
  ],
235
  inputs=[input_image, resolution, num_inference_steps, strength, hdr, guidance_scale],
236
+ outputs=output_slider,
237
  fn=gradio_process_image,
238
  cache_examples=True,
239
  )
240
 
 
 
 
 
241
  demo.launch(share=True)