File size: 8,117 Bytes
18c0acd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
import logging
import os

import streamlit as st
from langchain.schema import AIMessage, HumanMessage
from langchain_core.pydantic_v1 import SecretStr

from src.models.model_factory import EvaluationChatModelFactory, GeneratorModelFactory
from src.utils import convert_json_to_str, read_json, read_plain_text
from src.whisper_transcription import whisper_stt

logging.basicConfig(level=os.getenv("ENV", "INFO"))

start_container = st.container()
with start_container:
    col1_head, col2_head = st.columns([0.15, 0.85])

col1_head.image("./docs/images/logo.png", width=80)
col2_head.title("LinguAIcoach")

st.subheader("_Your :red[AI] English Teacher_")
st.divider()


model_factory = EvaluationChatModelFactory()
gen_factory = GeneratorModelFactory()
exam_guides = read_json("./exam_guides/lessons.json")
config = read_json("./src/config.json")

input_text = None
input_voice = None

with st.sidebar as sidebar:
    exam_selection = st.sidebar.selectbox("Select Exam type", list(exam_guides.keys()))
    exam_selection = exam_selection if exam_selection else str(next(iter(exam_guides.keys())))
    exam_info = exam_guides[exam_selection]
    st.session_state.openai_api_key = SecretStr(
        os.getenv(
            "OPENAI_API_KEY",
            st.text_input("OpenAI API Key", key="chatbot_api_key", type="password"),
        )
    )

    st.markdown("[:red[Get your OpenAI API key]](https://platform.openai.com/account/api-keys)")
    st.markdown(
        "[![GitHub](https://img.shields.io/badge/github-%23121011.svg?style=for-the-badge&logo=github&logoColor=white)](https://github.com/alvaroalon2/LinguAIcoach)"
    )

    logging.debug(f"Selected exam: {exam_selection}")
    logging.debug(f"Exam guides: {exam_guides}")

exam_content = read_plain_text(exam_info["file"])
exam_desc = exam_info["description"]
init_prompt = exam_info["init_prompt"]
level = exam_info["level"]

if "current_exam" not in st.session_state:
    st.session_state["current_exam"] = ""
if st.session_state["current_exam"] != exam_selection:
    logging.debug("Resetting state")
    input_text = None
    input_voice = None
    st.session_state["current_exam"] = exam_selection
    st.session_state["messages"] = [AIMessage(content=init_prompt)]
    st.session_state.first_run = True
    st.session_state["image_url"] = None
    st.session_state["question"] = []
    st.session_state["exam_type"] = exam_info["type"]

response_container = st.container()
start_container = st.container()
with start_container:
    col1_start, col2_start, col3_start = st.columns([0.4, 0.2, 0.4])
voice_container = st.container()
with voice_container:
    col1_voice, col2_voice, col3_voice = st.columns([0.39, 0.22, 0.39])

if not st.session_state.openai_api_key:
    logging.warning("Please add your OpenAI API key to continue.")
    st.info("Please add your OpenAI API key to continue.")
    st.stop()

model_eval = model_factory.create_model(
    model_class=st.session_state["exam_type"],
    openai_api_key=st.session_state.openai_api_key,
    level=level,
    chat_temperature=config["OPENAI_TEMPERATURE_EVAL"],
)

generator = gen_factory.create_model(
    model_class=st.session_state["exam_type"],
    openai_api_key=st.session_state.openai_api_key,
    exam_prompt=exam_content,
    level=level,
    description=exam_desc,
    chat_temperature=config["OPENAI_TEMPERATURE_GEN"],
    history_chat=[
        AIMessage(content=f"Previous question (Don't repeat): {q.content}")
        for q in st.session_state["question"][-config["N_MAX_HISTORY"] :]
    ],
    img_size=config["IMG_GEN_SIZE"],
)

if "messages" in st.session_state:
    logging.debug(f"Starting exercises for exam_type: {st.session_state['exam_type']}")
    placeholder_start = col2_start.empty()
    start_button = placeholder_start.button("Start exercises!", disabled=not (st.session_state.first_run))
    if start_button:
        logging.debug("Start button clicked, running exercise")
        st.session_state.first_run = False
        if st.session_state["exam_type"] == "qa":
            start_response = generator.generate()
            logging.info(f"Generated first question: {start_response}")
            st.session_state["question"].append(AIMessage(content=start_response))
            st.session_state["messages"].append(st.session_state["question"][-1])
        elif st.session_state["exam_type"] == "img_desc":
            st.session_state["image_url"] = generator.generate()
            logging.debug(f"Generated first image URL: {st.session_state['image_url']}")
            st.session_state["messages"].append(
                AIMessage(
                    content=st.session_state["image_url"],
                    response_metadata={"type": "image"},
                )
            )

if not st.session_state.first_run:
    placeholder_start.empty()

for msg in st.session_state.messages:
    if isinstance(msg, HumanMessage):
        if getattr(msg, "response_metadata", None) and msg.response_metadata["type"] == "image":
            with response_container.chat_message("user"):
                response_container.image(str(msg.content), caption="AI generated image")
        else:
            response_container.chat_message("user").write(msg.content)
    elif getattr(msg, "response_metadata", None) and msg.response_metadata["type"] == "image":
        with response_container.chat_message("assistant"):
            response_container.write("Describe what you can see in the following image: ")
            response_container.image(msg.content, caption="AI generated image")
    else:
        response_container.chat_message("assistant").write(msg.content)

placeholder_input = st.empty()
if st.session_state.first_run:
    placeholder_input.empty()
    col2_voice.empty()
else:
    input_text = placeholder_input.chat_input(disabled=st.session_state.first_run) or None
    logging.debug(f"Input text: {input_text}")
    with col2_voice:
        input_voice = whisper_stt(language="en", n_max_retry=config["N_MAX_RETRY"])
        logging.debug(f"Input voice: {input_voice}")

input_prompt = input_text or input_voice

if input_prompt := input_text or input_voice:
    logging.info(f"Processing input: {input_prompt}")

    match st.session_state["exam_type"]:
        case "qa":
            response = model_eval.predict(input_prompt, st.session_state["question"][-1].content)
            logging.info(f"QA model response: {response}")
        case "img_desc":
            response = model_eval.predict(input_prompt, st.session_state["image_url"])
            logging.info(f"Image description model response: {response}")

    response_str = convert_json_to_str(response)

    with response_container:
        st.session_state.messages.append(HumanMessage(content=input_prompt))
        logging.debug(f"Adding user message to session state: {input_prompt}")
        response_container.chat_message("user").write(input_prompt)

        st.session_state.messages.append(AIMessage(content=response_str))
        logging.debug(f"Adding AI message to session state: {response_str}")
        response_container.chat_message("assistant").write(response_str)
        if st.session_state["exam_type"] == "qa":
            new_question = generator.generate()
            logging.info(f"Generated new question: {new_question}")
            st.session_state["question"].append(AIMessage(content=new_question))
            st.session_state.messages.append(AIMessage(content=new_question))
            response_container.chat_message("assistant").write(new_question)
        elif st.session_state["exam_type"] == "img_desc":
            new_image = generator.generate()
            st.session_state["image_url"] = new_image
            st.session_state.messages.append(AIMessage(content=new_image))
            logging.info(f"Generated new image URL: {st.session_state['image_url']}")
            response_container.chat_message("assistant").write("Describe what you can see in the following image: ")
            with response_container.chat_message("assistant"):
                response_container.image(st.session_state["image_url"], caption="AI generated image")