|
import gradio as gr |
|
import os |
|
from huggingface_hub import HfApi, snapshot_download |
|
from apscheduler.schedulers.background import BackgroundScheduler |
|
from datasets import load_dataset |
|
from src.utils import load_all_data, prep_df, sort_by_category |
|
from src.md import ABOUT_TEXT, TOP_TEXT |
|
from src.css import custom_css |
|
import numpy as np |
|
|
|
api = HfApi() |
|
|
|
COLLAB_TOKEN = os.environ.get("COLLAB_TOKEN") |
|
evals_repo = "allenai/href_results" |
|
|
|
eval_set_repo = "allenai/href_validation" |
|
local_result_dir = "./results/" |
|
|
|
def restart_space(): |
|
api.restart_space(repo_id="allenai/href", token=COLLAB_TOKEN) |
|
|
|
print("Pulling evaluation results") |
|
repo = snapshot_download( |
|
local_dir=local_result_dir, |
|
ignore_patterns=[], |
|
repo_id=evals_repo, |
|
use_auth_token=COLLAB_TOKEN, |
|
tqdm_class=None, |
|
etag_timeout=30, |
|
repo_type="dataset", |
|
) |
|
|
|
href_data_greedy = prep_df(load_all_data(local_result_dir, subdir="temperature=0.0")) |
|
href_data_nongreedy = prep_df(load_all_data(local_result_dir, subdir="temperature=1.0")) |
|
|
|
|
|
col_types_href = ["number"] + ["markdown"] + ["number"] * int((len(href_data_greedy.columns) - 1) / 2) |
|
col_types_href_hidden = ["number"] + ["markdown"] + ["number"] * (len(href_data_greedy.columns) - 1) |
|
categories = ['Average', 'Brainstorm', 'Open QA', 'Closed QA', 'Extract', 'Generation', 'Rewrite', 'Summarize', 'Classify', "Reasoning Over Numerical Data", "Multi-Document Synthesis", "Fact Checking or Attributed QA"] |
|
|
|
|
|
|
|
eval_set = load_dataset(eval_set_repo, use_auth_token=COLLAB_TOKEN, split="dev") |
|
def random_sample(r: gr.Request, category): |
|
if category is None or category == []: |
|
sample_index = np.random.randint(0, len(eval_set) - 1) |
|
sample = eval_set[sample_index] |
|
else: |
|
if isinstance(category, str): |
|
category = [category] |
|
|
|
eval_set_filtered = eval_set.filter(lambda x: x["category"] in category) |
|
sample_index = np.random.randint(0, len(eval_set_filtered) - 1) |
|
sample = eval_set_filtered[sample_index] |
|
|
|
markdown_text = '\n\n'.join([f"**{key}**:\n\n{value}" for key, value in sample.items()]) |
|
return markdown_text |
|
|
|
subsets = eval_set.unique("category") |
|
|
|
|
|
def regex_table(dataframe, regex, selected_category, style=True): |
|
""" |
|
Takes a model name as a regex, then returns only the rows that has that in it. |
|
""" |
|
dataframe = sort_by_category(dataframe, selected_category) |
|
|
|
|
|
regex_list = [x.strip() for x in regex.split(",")] |
|
|
|
combined_regex = '|'.join(regex_list) |
|
|
|
|
|
data = dataframe[dataframe["Model"].str.contains(combined_regex, case=False, na=False)] |
|
|
|
data.reset_index(drop=True, inplace=True) |
|
|
|
if style: |
|
|
|
format_dict = {col: "{:.1f}" for col in data.columns if col not in ['Average', 'Model', 'Rank', '95% CI']} |
|
format_dict['Average'] = "{:.2f}" |
|
data = data.style.format(format_dict, na_rep='').set_properties(**{'text-align': 'right'}) |
|
return data |
|
|
|
|
|
total_models = len(regex_table(href_data_greedy.copy(), "", "Average", style=False).values) |
|
|
|
with gr.Blocks(css=custom_css) as app: |
|
|
|
with gr.Row(): |
|
with gr.Column(scale=8): |
|
gr.Markdown(TOP_TEXT.format(str(total_models))) |
|
with gr.Column(scale=2): |
|
|
|
|
|
|
|
gr.Markdown(""" |
|
<img src="file/src/logo.png" height="130"> |
|
""") |
|
with gr.Tabs(elem_classes="tab-buttons") as tabs: |
|
with gr.TabItem("🏆 HREF Leaderboard"): |
|
with gr.Row(): |
|
search_1 = gr.Textbox(label="Model Search (delimit with , )", |
|
|
|
show_label=True) |
|
category_selector_1 = gr.Dropdown(categories, label="Sorted By", value="Average", multiselect=False, show_label=True, elem_id="category_selector", elem_classes="category_selector_class") |
|
with gr.Row(): |
|
|
|
rewardbench_table_hidden = gr.Dataframe( |
|
href_data_greedy.values, |
|
datatype=col_types_href_hidden, |
|
headers=href_data_greedy.columns.tolist(), |
|
visible=False, |
|
) |
|
rewardbench_table = gr.Dataframe( |
|
regex_table(href_data_greedy.copy(), "", "Average"), |
|
datatype=col_types_href, |
|
headers=href_data_greedy.columns.tolist(), |
|
elem_id="href_data_greedy", |
|
interactive=False, |
|
height=1000, |
|
) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
with gr.TabItem("About"): |
|
with gr.Row(): |
|
gr.Markdown(ABOUT_TEXT) |
|
|
|
with gr.TabItem("Dataset Viewer"): |
|
with gr.Row(): |
|
|
|
gr.Markdown("""## Random Dataset Sample Viewer""") |
|
subset_selector = gr.Dropdown(subsets, label="Category", value=None, multiselect=True) |
|
button = gr.Button("Show Random Sample") |
|
|
|
with gr.Row(): |
|
sample_display = gr.Markdown("{sampled data loads here}") |
|
|
|
button.click(fn=random_sample, inputs=[subset_selector], outputs=[sample_display]) |
|
|
|
search_1.change(regex_table, inputs=[rewardbench_table_hidden, search_1, category_selector_1], outputs=rewardbench_table) |
|
category_selector_1.change(regex_table, inputs=[rewardbench_table_hidden, search_1, category_selector_1], outputs=rewardbench_table) |
|
|
|
|
|
|
|
with gr.Row(): |
|
with gr.Accordion("📚 Citation", open=False): |
|
citation_button = gr.Textbox( |
|
value=r"""@article{lyu2024href, |
|
title={HREF: Human Response-Guided Evaluation of Instruction Following in Language Models}, |
|
author={Xinxi Lyu and Yizhong Wang and Hannaneh Hajishirzi and Pradeep Dasigi}, |
|
journal={arXiv preprint arXiv:2412.15524}, |
|
year={2024} |
|
}""", |
|
lines=7, |
|
label="Copy the following to cite these results.", |
|
elem_id="citation-button", |
|
show_copy_button=True, |
|
) |
|
|
|
|
|
scheduler = BackgroundScheduler() |
|
scheduler.add_job(restart_space, "interval", seconds=10800) |
|
scheduler.start() |
|
app.launch(allowed_paths=['src/']) |
|
|