File size: 13,425 Bytes
507a14d
 
9ceb843
e5d5995
8e499f4
9ceb843
ab74236
0b8c16d
8799e00
507a14d
 
 
 
 
ab74236
 
7b96731
9ceb843
 
e5d5995
7b96731
507a14d
 
9ceb843
 
f5220e7
9ceb843
e4cd4cd
9ceb843
 
507a14d
 
 
9ceb843
f5220e7
9ceb843
 
8799e00
 
 
 
 
 
 
9ceb843
f5220e7
 
8799e00
 
 
 
 
 
 
 
 
f5220e7
 
8799e00
e5d5995
8799e00
f5220e7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e5d5995
9ceb843
 
 
 
56fcfaf
 
 
 
 
 
 
 
b7aaef4
56fcfaf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
507a14d
ab74236
56fcfaf
ab74236
9ceb843
507a14d
f5220e7
 
b7aaef4
 
56fcfaf
9ceb843
 
507a14d
8e499f4
 
e5d5995
 
 
 
 
 
 
 
 
 
 
 
ab74236
8e499f4
 
e5d5995
 
06fd8bd
8799e00
 
 
 
 
 
 
06fd8bd
 
 
8799e00
 
 
 
507a14d
9ceb843
507a14d
06fd8bd
 
 
 
 
9ceb843
ab74236
9ceb843
06fd8bd
 
9ceb843
 
 
06fd8bd
9ceb843
06fd8bd
 
8799e00
 
06fd8bd
 
8799e00
06fd8bd
ab74236
9ceb843
06fd8bd
 
9ceb843
 
 
06fd8bd
9ceb843
06fd8bd
 
8799e00
 
06fd8bd
 
8799e00
ab74236
56fcfaf
8799e00
 
 
 
 
 
 
06fd8bd
 
 
 
 
 
 
ab74236
 
 
 
 
 
 
8799e00
 
 
 
 
 
 
06fd8bd
 
 
 
 
 
 
 
9ceb843
 
 
 
8e499f4
 
 
 
 
e5d5995
8e499f4
 
 
 
 
e5d5995
0b8c16d
 
 
 
 
8799e00
06fd8bd
 
 
 
9ceb843
8e499f4
e5d5995
 
 
 
 
 
 
 
 
9ceb843
e5d5995
 
 
8799e00
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
import gradio as gr
import os
from huggingface_hub import HfApi, snapshot_download
from apscheduler.schedulers.background import BackgroundScheduler
from datasets import load_dataset
from src.utils import load_all_data
from src.md import ABOUT_TEXT, TOP_TEXT
from src.plt import plot_avg_correlation
from src.constants import subset_mapping, length_categories, example_counts
import numpy as np

api = HfApi()

COLLAB_TOKEN = os.environ.get("COLLAB_TOKEN")
evals_repo = "ai2-adapt-dev/HERM-Results"

eval_set_repo = "ai2-adapt-dev/rm-benchmark-dev"
repo_dir_herm = "./evals/herm/"

def restart_space():
    api.restart_space(repo_id="ai2-adapt-dev/rm-benchmark-viewer", token=COLLAB_TOKEN)

print("Pulling evaluation results")
repo = snapshot_download(
    local_dir=repo_dir_herm,
    ignore_patterns=["pref-sets-scores/*", "eval-set-scores/*"],
    repo_id=evals_repo,
    use_auth_token=COLLAB_TOKEN,
    tqdm_class=None, 
    etag_timeout=30,
    repo_type="dataset",
)


def avg_over_herm(dataframe_core, dataframe_prefs):
    """
    Averages over the subsets alpacaeval, mt-bench, llmbar, refusals, hep and returns dataframe with only these columns.

    We average over 4 core sections (per prompt weighting):
    1. Chat: Includes the easy chat subsets (alpacaeval-easy, alpacaeval-length, alpacaeval-hard, mt-bench-easy, mt-bench-medium)
    2. Chat Hard: Includes the hard chat subsets (mt-bench-hard, llmbar-natural, llmbar-adver-neighbor, llmbar-adver-GPTInst, llmbar-adver-GPTOut, llmbar-adver-manual)
    3. Safety: Includes the safety subsets (refusals-dangerous, refusals-offensive, xstest-should-refuse, xstest-should-respond, do not answer)
    4. Code: Includes the code subsets (hep-cpp, hep-go, hep-java, hep-js, hep-python, hep-rust)

    """
    new_df = dataframe_core.copy()
    dataframe_prefs = dataframe_prefs.copy()

    # for main subsets, keys in subset_mapping, take the weighted avg by example_counts and store for the models
    for subset, sub_subsets in subset_mapping.items():
        subset_cols = [col for col in new_df.columns if col in sub_subsets]
        sub_data = new_df[subset_cols].values # take the relevant column values
        sub_counts = [example_counts[s] for s in sub_subsets] # take the example counts
        new_df[subset] = np.round(np.average(sub_data, axis=1, weights=sub_counts), 2) # take the weighted average
        # new_df[subset] = np.round(np.nanmean(new_df[subset_cols].values, axis=1), 2)

    data_cols = list(subset_mapping.keys())
    keep_columns = ["model",] + ["model_type"] + data_cols
    # keep_columns = ["model", "average"] + subsets
    new_df = new_df[keep_columns]

    # selected average from pref_sets
    pref_columns = ["anthropic_helpful", "mtbench_gpt4", "shp", "summarize"]
    pref_data = dataframe_prefs[pref_columns].values

    # add column test sets knowing the rows are not identical, take superset
    dataframe_prefs["Test Sets"] = np.round(np.nanmean(pref_data, axis=1), 2)

    # add column Test Sets empty to new_df
    new_df["Test Sets"] = np.nan
    # per row in new_df if model is in dataframe_prefs, add the value to new_df["Test Sets"]
    values = []
    for i, row in new_df.iterrows():
        model = row["model"]
        if model in dataframe_prefs["model"].values:
            values.append(dataframe_prefs[dataframe_prefs["model"] == model]["Test Sets"].values[0])
            # new_df.at[i, "Test Sets"] = dataframe_prefs[dataframe_prefs["model"] == model]["Test Sets"].values[0]
        else:
            values.append(np.nan)
    
    new_df["Test Sets"] = values

    # add total average
    data_cols += ["Test Sets"]
    new_df["average"] = np.round(np.nanmean(new_df[data_cols].values, axis=1), 2)

    # make average third column
    keep_columns = ["model", "model_type", "average"] + data_cols
    new_df = new_df[keep_columns]
    return new_df

def expand_subsets(dataframe):
    # TODO need to modify data/ script to do this
    pass


def length_bias_check(dataframe):
    """
    Takes the raw herm dataframe and splits the data into new buckets according to length_categories.
    Then, take the average of the three buckets as "average"
    """
    new_df = dataframe.copy()
    existing_subsets = new_df.columns[3:] # model, model_type, average
    final_subsets = ["Length Bias", "Neutral", "Terse Bias"]
    # new data is empty list dict for each final subset
    new_data = {s: [] for s in final_subsets}

    # now, subsets correspond to those with True, Nuetral, and False length bias
    # check if length_categories[subset] == "True" or "False" or "Neutral"
    for subset in existing_subsets:
        subset_data = new_df[subset].values
        subset_length = length_categories[subset]
        # route to the correct bucket
        if subset_length == "True":
            new_data["Length Bias"].append(subset_data)
        elif subset_length == "Neutral":
            new_data["Neutral"].append(subset_data)
        elif subset_length == "False":
            new_data["Terse Bias"].append(subset_data)

    # take average of new_data and add to new_df (removing other columns than model)
    for subset in final_subsets:
        new_df[subset] = np.round(np.nanmean(new_data[subset], axis=0), 2)
    keep_columns = ["model"] + final_subsets
    new_df = new_df[keep_columns]
    # recompute average
    # new_df["average"] = np.round(np.nanmean(new_df[final_subsets].values, axis=1), 2)

    return new_df


    
herm_data = load_all_data(repo_dir_herm, subdir="eval-set").sort_values(by='average', ascending=False)
herm_data_length = length_bias_check(herm_data).sort_values(by='Terse Bias', ascending=False)
prefs_data = load_all_data(repo_dir_herm, subdir="pref-sets").sort_values(by='average', ascending=False)
# prefs_data_sub = expand_subsets(prefs_data).sort_values(by='average', ascending=False)

herm_data_avg = avg_over_herm(herm_data, prefs_data).sort_values(by='average', ascending=False)

col_types_herm = ["markdown"] + ["str"] + ["number"] * (len(herm_data.columns) - 1)
col_types_herm_avg = ["markdown"]+ ["str"] + ["number"] * (len(herm_data_avg.columns) - 1)
cols_herm_data_length = ["markdown"] + ["number"] * (len(herm_data_length.columns) - 1)
col_types_prefs = ["markdown"] + ["number"] * (len(prefs_data.columns) - 1)
# col_types_prefs_sub = ["markdown"] + ["number"] * (len(prefs_data_sub.columns) - 1)

# for showing random samples
eval_set = load_dataset(eval_set_repo, use_auth_token=COLLAB_TOKEN, split="filtered")
def random_sample(r: gr.Request, subset):
    if subset is None or subset == []:
        sample_index = np.random.randint(0, len(eval_set) - 1)
        sample = eval_set[sample_index]
    else: # filter by subsets (can be list)
        if isinstance(subset, str):
            subset = [subset]
        # filter down dataset to only include the subset(s)
        eval_set_filtered = eval_set.filter(lambda x: x["subset"] in subset)
        sample_index = np.random.randint(0, len(eval_set_filtered) - 1)
        sample = eval_set_filtered[sample_index]

    markdown_text = '\n\n'.join([f"**{key}**:\n\n{value}" for key, value in sample.items()])
    return markdown_text

subsets = eval_set.unique("subset")

def regex_table(dataframe, regex, filter_button):
    """
    Takes a model name as a regex, then returns only the rows that has that in it.
    """
    # Split regex statement by comma and trim whitespace around regexes
    regex_list = [x.strip() for x in regex.split(",")]
    # Join the list into a single regex pattern with '|' acting as OR
    combined_regex = '|'.join(regex_list)
    # if filter_button, remove all rows with "ai2" in the model name
    if (not filter_button) and ("ai2" not in regex):
        dataframe = dataframe[~dataframe["model"].str.contains("ai2", case=False, na=False)]
    # Filter the dataframe such that 'model' contains any of the regex patterns
    return dataframe[dataframe["model"].str.contains(combined_regex, case=False, na=False)]


with gr.Blocks() as app:
    # create tabs for the app, moving the current table to one titled "HERM" and the benchmark_text to a tab called "About"
    with gr.Row():
        with gr.Column(scale=3):
            gr.Markdown(TOP_TEXT)
        with gr.Column(scale=2):
            search = gr.Textbox(label="Model Search (delimit with , )", placeholder="Regex search for a model")
            filter_button = gr.Checkbox(label="Include AI2 training runs (or type ai2 above).", interactive=True)
    with gr.Tabs(elem_classes="tab-buttons") as tabs:
        with gr.TabItem("HERM Eval Set - Overview"):
            with gr.Row():
                # reference data
                herm_table_hidden = gr.Dataframe(
                    herm_data_avg.values,
                    datatype=col_types_herm_avg,
                    headers=herm_data_avg.columns.tolist(),
                    visible=False,
                )
                herm_table = gr.Dataframe(
                    regex_table(herm_data_avg.copy(), "", False).values,
                    datatype=col_types_herm_avg,
                    headers=herm_data_avg.columns.tolist(),
                    elem_id="herm_dataframe_avg",
                    height=1000,
                )
                
        with gr.TabItem("HERM Eval Set - Detailed"):
            with gr.Row():
                # ref data
                herm_table_detailed_hidden = gr.Dataframe(
                    herm_data.values,
                    datatype=col_types_herm,
                    headers=herm_data.columns.tolist(),
                    visible=False,
                )
                herm_table_detailed = gr.Dataframe(
                    regex_table(herm_data.copy(), "", False).values,
                    datatype=col_types_herm,
                    headers=herm_data.columns.tolist(),
                    elem_id="herm_dataframe",
                    height=1000,
                )
        with gr.TabItem("HERM Eval Set - Length Bias"):
            with gr.Row():
                # backup
                herm_table_len_hidden = gr.Dataframe(
                    herm_data_length.values,
                    datatype=cols_herm_data_length,
                    headers=herm_data_length.columns.tolist(),
                    visible=False,
                )
                herm_table_len = gr.Dataframe(
                    regex_table(herm_data_length.copy(), "", False).values,
                    datatype=cols_herm_data_length,
                    headers=herm_data_length.columns.tolist(),
                    elem_id="herm_dataframe_length",
                    height=1000,
                )
        with gr.TabItem("Known Pref. Sets"):
            with gr.Row():
                PREF_SET_TEXT = """
                For more information, see the [dataset](https://huggingface.co/datasets/allenai/pref-test-sets).
                """
                gr.Markdown(PREF_SET_TEXT)
            with gr.Row():
                # backup
                pref_sets_table_hidden = gr.Dataframe(
                    prefs_data.values,
                    datatype=col_types_prefs,
                    headers=prefs_data.columns.tolist(),
                    visible=False,
                )
                pref_sets_table = gr.Dataframe(
                    regex_table(prefs_data.copy(), "", False).values,
                    datatype=col_types_prefs,
                    headers=prefs_data.columns.tolist(),
                    elem_id="prefs_dataframe",
                    height=1000,
                )


        with gr.TabItem("About"):
            with gr.Row():
                gr.Markdown(ABOUT_TEXT)

        with gr.TabItem("Dataset Viewer"):
            with gr.Row():
                # loads one sample
                gr.Markdown("## Random Dataset Sample Viewer")
                subset_selector = gr.Dropdown(subsets, label="Subset", value=None, multiselect=True)
                button = gr.Button("Show Random Sample")

            with gr.Row():
                sample_display = gr.Markdown("{sampled data loads here}")

            button.click(fn=random_sample, inputs=[subset_selector], outputs=[sample_display])
        # removed plot because not pretty enough
        # with gr.TabItem("Model Correlation"):
        #     with gr.Row():
        #         plot = plot_avg_correlation(herm_data_avg, prefs_data)
        #         gr.Plot(plot)

    search.change(regex_table, inputs=[herm_table_hidden, search, filter_button], outputs=herm_table)
    search.change(regex_table, inputs=[herm_table_detailed_hidden, search, filter_button], outputs=herm_table_detailed)
    search.change(regex_table, inputs=[herm_table_len_hidden, search, filter_button], outputs=herm_table_len)
    search.change(regex_table, inputs=[pref_sets_table_hidden, search, filter_button], outputs=pref_sets_table)    
                
# Load data when app starts, TODO make this used somewhere...
# def load_data_on_start():
#     data_herm = load_all_data(repo_dir_herm)
#     herm_table.update(data_herm)

#     data_herm_avg = avg_over_herm(repo_dir_herm)
#     herm_table.update(data_herm_avg)

#     data_prefs = load_all_data(repo_dir_prefs)
#     pref_sets_table.update(data_prefs)

scheduler = BackgroundScheduler()
scheduler.add_job(restart_space, "interval", seconds=10800) # restarted every 3h
scheduler.start()
app.launch() # had .queue() before launch before... not sure if that's necessary