File size: 17,012 Bytes
507a14d 9ceb843 e5d5995 8e499f4 9ceb843 ab74236 0b8c16d 8799e00 507a14d 31bff5a ab74236 31bff5a 9ceb843 e5d5995 31bff5a 507a14d 9ceb843 31bff5a f5220e7 9ceb843 e4cd4cd 9ceb843 507a14d 9ceb843 31bff5a 9ceb843 8799e00 9ceb843 f5220e7 8799e00 f5220e7 8799e00 e5d5995 8799e00 f5220e7 e5d5995 9ceb843 56fcfaf 31bff5a 56fcfaf b7aaef4 56fcfaf 507a14d 31bff5a 9ceb843 507a14d 31bff5a f5220e7 31bff5a 9ceb843 507a14d 8e499f4 e5d5995 ab74236 8e499f4 e5d5995 06fd8bd 8799e00 31bff5a 06fd8bd 31bff5a 8799e00 507a14d 31bff5a 507a14d 31bff5a 06fd8bd 9ceb843 31bff5a 9ceb843 06fd8bd 31bff5a 06fd8bd 9ceb843 31bff5a 06fd8bd 8799e00 06fd8bd 31bff5a 9ceb843 06fd8bd 31bff5a 06fd8bd 9ceb843 31bff5a 06fd8bd 8799e00 31bff5a 56fcfaf 31bff5a ab74236 8799e00 06fd8bd 31bff5a 06fd8bd 9ceb843 8e499f4 e5d5995 8e499f4 e5d5995 0b8c16d 31bff5a 0b8c16d 8799e00 31bff5a 8e499f4 e5d5995 31bff5a e5d5995 31bff5a e5d5995 9ceb843 e5d5995 8799e00 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 |
import gradio as gr
import os
from huggingface_hub import HfApi, snapshot_download
from apscheduler.schedulers.background import BackgroundScheduler
from datasets import load_dataset
from src.utils import load_all_data
from src.md import ABOUT_TEXT, TOP_TEXT
from src.plt import plot_avg_correlation
from src.constants import subset_mapping, length_categories, example_counts
import numpy as np
api = HfApi()
COLLAB_TOKEN = os.environ.get("COLLAB_TOKEN")
evals_repo = "allenai/reward-bench-results"
eval_set_repo = "allenai/reward-bench"
repo_dir_rewardbench = "./evals/rewardbench/"
def restart_space():
api.restart_space(repo_id="allenai/reward-bench", token=COLLAB_TOKEN)
print("Pulling evaluation results")
repo = snapshot_download(
local_dir=repo_dir_rewardbench,
ignore_patterns=["pref-sets-scores/*", "eval-set-scores/*"],
repo_id=evals_repo,
use_auth_token=COLLAB_TOKEN,
tqdm_class=None,
etag_timeout=30,
repo_type="dataset",
)
def avg_over_rewardbench(dataframe_core, dataframe_prefs):
"""
Averages over the subsets alpacaeval, mt-bench, llmbar, refusals, hep and returns dataframe with only these columns.
We average over 4 core sections (per prompt weighting):
1. Chat: Includes the easy chat subsets (alpacaeval-easy, alpacaeval-length, alpacaeval-hard, mt-bench-easy, mt-bench-medium)
2. Chat Hard: Includes the hard chat subsets (mt-bench-hard, llmbar-natural, llmbar-adver-neighbor, llmbar-adver-GPTInst, llmbar-adver-GPTOut, llmbar-adver-manual)
3. Safety: Includes the safety subsets (refusals-dangerous, refusals-offensive, xstest-should-refuse, xstest-should-respond, do not answer)
4. Code: Includes the code subsets (hep-cpp, hep-go, hep-java, hep-js, hep-python, hep-rust)
"""
new_df = dataframe_core.copy()
dataframe_prefs = dataframe_prefs.copy()
# for main subsets, keys in subset_mapping, take the weighted avg by example_counts and store for the models
for subset, sub_subsets in subset_mapping.items():
subset_cols = [col for col in new_df.columns if col in sub_subsets]
sub_data = new_df[subset_cols].values # take the relevant column values
sub_counts = [example_counts[s] for s in sub_subsets] # take the example counts
new_df[subset] = np.round(np.average(sub_data, axis=1, weights=sub_counts), 2) # take the weighted average
# new_df[subset] = np.round(np.nanmean(new_df[subset_cols].values, axis=1), 2)
data_cols = list(subset_mapping.keys())
keep_columns = ["model",] + ["model_type"] + data_cols
# keep_columns = ["model", "average"] + subsets
new_df = new_df[keep_columns]
# selected average from pref_sets
pref_columns = ["anthropic_helpful", "mtbench_gpt4", "shp", "summarize"]
pref_data = dataframe_prefs[pref_columns].values
# add column test sets knowing the rows are not identical, take superset
dataframe_prefs["Test Sets"] = np.round(np.nanmean(pref_data, axis=1), 2)
# add column Test Sets empty to new_df
new_df["Test Sets"] = np.nan
# per row in new_df if model is in dataframe_prefs, add the value to new_df["Test Sets"]
values = []
for i, row in new_df.iterrows():
model = row["model"]
if model in dataframe_prefs["model"].values:
values.append(dataframe_prefs[dataframe_prefs["model"] == model]["Test Sets"].values[0])
# new_df.at[i, "Test Sets"] = dataframe_prefs[dataframe_prefs["model"] == model]["Test Sets"].values[0]
else:
values.append(np.nan)
new_df["Test Sets"] = values
# add total average
data_cols += ["Test Sets"]
new_df["average"] = np.round(np.nanmean(new_df[data_cols].values, axis=1), 2)
# make average third column
keep_columns = ["model", "model_type", "average"] + data_cols
new_df = new_df[keep_columns]
return new_df
def expand_subsets(dataframe):
# TODO need to modify data/ script to do this
pass
def length_bias_check(dataframe):
"""
Takes the raw rewardbench dataframe and splits the data into new buckets according to length_categories.
Then, take the average of the three buckets as "average"
"""
new_df = dataframe.copy()
existing_subsets = new_df.columns[3:] # model, model_type, average
final_subsets = ["Length Bias", "Neutral", "Terse Bias"]
# new data is empty list dict for each final subset
new_data = {s: [] for s in final_subsets}
# now, subsets correspond to those with True, Nuetral, and False length bias
# check if length_categories[subset] == "True" or "False" or "Neutral"
for subset in existing_subsets:
subset_data = new_df[subset].values
subset_length = length_categories[subset]
# route to the correct bucket
if subset_length == "True":
new_data["Length Bias"].append(subset_data)
elif subset_length == "Neutral":
new_data["Neutral"].append(subset_data)
elif subset_length == "False":
new_data["Terse Bias"].append(subset_data)
# take average of new_data and add to new_df (removing other columns than model)
for subset in final_subsets:
new_df[subset] = np.round(np.nanmean(new_data[subset], axis=0), 2)
keep_columns = ["model"] + final_subsets
new_df = new_df[keep_columns]
# recompute average
# new_df["average"] = np.round(np.nanmean(new_df[final_subsets].values, axis=1), 2)
return new_df
rewardbench_data = load_all_data(repo_dir_rewardbench, subdir="eval-set").sort_values(by='average', ascending=False)
rewardbench_data_length = length_bias_check(rewardbench_data).sort_values(by='Terse Bias', ascending=False)
prefs_data = load_all_data(repo_dir_rewardbench, subdir="pref-sets").sort_values(by='average', ascending=False)
# prefs_data_sub = expand_subsets(prefs_data).sort_values(by='average', ascending=False)
rewardbench_data_avg = avg_over_rewardbench(rewardbench_data, prefs_data).sort_values(by='average', ascending=False)
col_types_rewardbench = ["markdown"] + ["str"] + ["number"] * (len(rewardbench_data.columns) - 1)
col_types_rewardbench_avg = ["markdown"]+ ["str"] + ["number"] * (len(rewardbench_data_avg.columns) - 1)
cols_rewardbench_data_length = ["markdown"] + ["number"] * (len(rewardbench_data_length.columns) - 1)
col_types_prefs = ["markdown"] + ["number"] * (len(prefs_data.columns) - 1)
# col_types_prefs_sub = ["markdown"] + ["number"] * (len(prefs_data_sub.columns) - 1)
# for showing random samples
eval_set = load_dataset(eval_set_repo, use_auth_token=COLLAB_TOKEN, split="filtered")
def random_sample(r: gr.Request, subset):
if subset is None or subset == []:
sample_index = np.random.randint(0, len(eval_set) - 1)
sample = eval_set[sample_index]
else: # filter by subsets (can be list)
if isinstance(subset, str):
subset = [subset]
# filter down dataset to only include the subset(s)
eval_set_filtered = eval_set.filter(lambda x: x["subset"] in subset)
sample_index = np.random.randint(0, len(eval_set_filtered) - 1)
sample = eval_set_filtered[sample_index]
markdown_text = '\n\n'.join([f"**{key}**:\n\n{value}" for key, value in sample.items()])
return markdown_text
subsets = eval_set.unique("subset")
def regex_table(dataframe, regex, filter_button):
"""
Takes a model name as a regex, then returns only the rows that has that in it.
"""
# Split regex statement by comma and trim whitespace around regexes
regex_list = [x.strip() for x in regex.split(",")]
# Join the list into a single regex pattern with '|' acting as OR
combined_regex = '|'.join(regex_list)
# if filter_button, remove all rows with "ai2" in the model name
if isinstance(filter_button, list) or isinstance(filter_button, str):
if "AI2 Experiments" not in filter_button and ("ai2" not in regex):
dataframe = dataframe[~dataframe["model"].str.contains("ai2", case=False, na=False)]
if "Seq. Classifiers" not in filter_button:
dataframe = dataframe[~dataframe["model_type"].str.contains("Seq. Classifier", case=False, na=False)]
if "DPO" not in filter_button:
dataframe = dataframe[~dataframe["model_type"].str.contains("DPO", case=False, na=False)]
if "Custom Classifiers" not in filter_button:
dataframe = dataframe[~dataframe["model_type"].str.contains("Custom Classifier", case=False, na=False)]
# Filter the dataframe such that 'model' contains any of the regex patterns
return dataframe[dataframe["model"].str.contains(combined_regex, case=False, na=False)]
with gr.Blocks() as app:
# create tabs for the app, moving the current table to one titled "rewardbench" and the benchmark_text to a tab called "About"
with gr.Row():
with gr.Column(scale=2.2):
# search = gr.Textbox(label="Model Search (delimit with , )", placeholder="Regex search for a model")
# filter_button = gr.Checkbox(label="Include AI2 training runs (or type ai2 above).", interactive=True)
# img = gr.Image(value="https://private-user-images.githubusercontent.com/10695622/310698241-24ed272a-0844-451f-b414-fde57478703e.png", width=500)
gr.Markdown("""
![](file/src/logo.png)
""")
with gr.Column(scale=3):
gr.Markdown(TOP_TEXT)
with gr.Tabs(elem_classes="tab-buttons") as tabs:
with gr.TabItem("🏆 RewardBench Leaderboard"):
with gr.Row():
search_1 = gr.Textbox(label="Model Search (delimit with , )", placeholder="Regex search for a model")
model_types_1 = gr.CheckboxGroup(["Seq. Classifiers", "DPO", "Custom Classifiers", "AI2 Experiments"],
value=["Seq. Classifiers", "DPO", "Custom Classifiers"],
label="Model Types",
# info="Which model types to include.",
)
with gr.Row():
# reference data
rewardbench_table_hidden = gr.Dataframe(
rewardbench_data_avg.values,
datatype=col_types_rewardbench_avg,
headers=rewardbench_data_avg.columns.tolist(),
visible=False,
)
rewardbench_table = gr.Dataframe(
regex_table(rewardbench_data_avg.copy(), "", ["Seq. Classifiers", "DPO", "Custom Classifiers"]).values,
datatype=col_types_rewardbench_avg,
headers=rewardbench_data_avg.columns.tolist(),
elem_id="rewardbench_dataframe_avg",
height=1000,
)
with gr.TabItem("🔍 RewardBench - Detailed"):
with gr.Row():
search_2 = gr.Textbox(label="Model Search (delimit with , )", placeholder="Regex search for a model")
model_types_2 = gr.CheckboxGroup(["Seq. Classifiers", "DPO", "Custom Classifiers", "AI2 Experiments"],
value=["Seq. Classifiers", "DPO", "Custom Classifiers"],
label="Model Types",
# info="Which model types to include."
)
with gr.Row():
# ref data
rewardbench_table_detailed_hidden = gr.Dataframe(
rewardbench_data.values,
datatype=col_types_rewardbench,
headers=rewardbench_data.columns.tolist(),
visible=False,
)
rewardbench_table_detailed = gr.Dataframe(
regex_table(rewardbench_data.copy(), "", ["Seq. Classifiers", "DPO", "Custom Classifiers"]).values,
datatype=col_types_rewardbench,
headers=rewardbench_data.columns.tolist(),
elem_id="rewardbench_dataframe",
height=1000,
)
# with gr.TabItem("rewardbench Eval Set - Length Bias"):
# with gr.Row():
# # backup
# rewardbench_table_len_hidden = gr.Dataframe(
# rewardbench_data_length.values,
# datatype=cols_rewardbench_data_length,
# headers=rewardbench_data_length.columns.tolist(),
# visible=False,
# )
# rewardbench_table_len = gr.Dataframe(
# regex_table(rewardbench_data_length.copy(), "", False).values,
# datatype=cols_rewardbench_data_length,
# headers=rewardbench_data_length.columns.tolist(),
# elem_id="rewardbench_dataframe_length",
# height=1000,
# )
with gr.TabItem("Existing Test Sets"):
with gr.Row():
search_3 = gr.Textbox(label="Model Search (delimit with , )", placeholder="Regex search for a model")
model_types_3 = gr.CheckboxGroup(["Seq. Classifiers", "DPO", "Custom Classifiers", "AI2 Experiments"],
value=["Seq. Classifiers", "DPO", "Custom Classifiers"],
label="Model Types",
# info="Which model types to include.",
)
with gr.Row():
PREF_SET_TEXT = """
For more information, see the [dataset](https://huggingface.co/datasets/allenai/pref-test-sets).
"""
gr.Markdown(PREF_SET_TEXT)
with gr.Row():
# backup
pref_sets_table_hidden = gr.Dataframe(
prefs_data.values,
datatype=col_types_prefs,
headers=prefs_data.columns.tolist(),
visible=False,
)
pref_sets_table = gr.Dataframe(
regex_table(prefs_data.copy(), "", ["Seq. Classifiers", "DPO", "Custom Classifiers"]).values,
datatype=col_types_prefs,
headers=prefs_data.columns.tolist(),
elem_id="prefs_dataframe",
height=1000,
)
with gr.TabItem("About"):
with gr.Row():
gr.Markdown(ABOUT_TEXT)
with gr.TabItem("Dataset Viewer"):
with gr.Row():
# loads one sample
gr.Markdown("## Random Dataset Sample Viewer")
subset_selector = gr.Dropdown(subsets, label="Subset", value=None, multiselect=True)
button = gr.Button("Show Random Sample")
with gr.Row():
sample_display = gr.Markdown("{sampled data loads here}")
button.click(fn=random_sample, inputs=[subset_selector], outputs=[sample_display])
# removed plot because not pretty enough
# with gr.TabItem("Model Correlation"):
# with gr.Row():
# plot = plot_avg_correlation(rewardbench_data_avg, prefs_data)
# gr.Plot(plot)
search_1.change(regex_table, inputs=[rewardbench_table_hidden, search_1, model_types_1], outputs=rewardbench_table)
search_2.change(regex_table, inputs=[rewardbench_table_detailed_hidden, search_2, model_types_2], outputs=rewardbench_table_detailed)
# search.change(regex_table, inputs=[rewardbench_table_len_hidden, search, filter_button], outputs=rewardbench_table_len)
search_3.change(regex_table, inputs=[pref_sets_table_hidden, search_3, model_types_3], outputs=pref_sets_table)
model_types_1.change(regex_table, inputs=[rewardbench_table_hidden, search_1, model_types_1], outputs=rewardbench_table)
model_types_2.change(regex_table, inputs=[rewardbench_table_detailed_hidden, search_2, model_types_2], outputs=rewardbench_table_detailed)
model_types_3.change(regex_table, inputs=[pref_sets_table_hidden, search_3, model_types_3], outputs=pref_sets_table)
# Load data when app starts, TODO make this used somewhere...
# def load_data_on_start():
# data_rewardbench = load_all_data(repo_dir_rewardbench)
# rewardbench_table.update(data_rewardbench)
# data_rewardbench_avg = avg_over_rewardbench(repo_dir_rewardbench)
# rewardbench_table.update(data_rewardbench_avg)
# data_prefs = load_all_data(repo_dir_prefs)
# pref_sets_table.update(data_prefs)
scheduler = BackgroundScheduler()
scheduler.add_job(restart_space, "interval", seconds=10800) # restarted every 3h
scheduler.start()
app.launch() # had .queue() before launch before... not sure if that's necessary
|