File size: 10,650 Bytes
1c919b3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3d2e59d
1c919b3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3d2e59d
1c919b3
 
 
1757118
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1c919b3
1757118
d74dfe0
 
1c919b3
1757118
 
 
 
 
 
d74dfe0
1c919b3
 
 
 
1757118
1c919b3
 
 
 
 
 
1757118
1c919b3
 
 
 
 
 
1757118
 
1c919b3
eaea101
0f9e3cb
3d2e59d
 
 
 
 
645b85b
 
 
 
3d2e59d
 
645b85b
c1a5b93
 
3d2e59d
 
 
 
 
eaea101
 
3d2e59d
 
 
 
 
eaea101
 
 
3d2e59d
645b85b
 
 
c1a5b93
645b85b
3d2e59d
eaea101
c1a5b93
3d2e59d
 
 
1c919b3
0f9e3cb
1f16e7a
 
0f9e3cb
 
 
262e137
0f9e3cb
1c919b3
 
 
 
 
 
 
 
 
3d2e59d
 
1c919b3
 
 
 
3d2e59d
 
1c919b3
 
 
b2043a7
 
1c919b3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3d2e59d
1c919b3
 
 
 
f95f8b0
 
1c919b3
 
 
3d2e59d
1c919b3
3d2e59d
1c919b3
 
 
 
 
3d2e59d
f95f8b0
1c919b3
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
"""A gradio app that renders a static leaderboard. This is used for Hugging Face Space."""
import ast
import argparse
import glob
import pickle
import plotly
import gradio as gr
import numpy as np
import pandas as pd
import gradio as gr
import pandas as pd
from pathlib import Path
import json
from constants import *
from datetime import datetime, timezone 
# from datasets import Dataset, load_dataset, concatenate_datasets
import os, uuid 
from utils_display import model_info
from constants import column_names,  LEADERBOARD_REMARKS, DEFAULT_K, LEADERBOARD_REMARKS_MAIN
import pytz
from data_utils import post_processing, get_random_item

# get the last updated time from the elo_ranks.all.jsonl file
LAST_UPDATED = None 
# with open("_intro.md", "r") as f:
#     INTRO_MD = f.read()
INTRO_MD = ""
with open("_about_us.md", "r") as f:
    ABOUT_MD = f.read()

with open("_header.md", "r") as f:
    HEADER_MD = f.read()

with open("_metrics.md", "r") as f:
    METRICS_MD = f.read()
 
raw_data = None 
original_df = None  
# available_models = [] # to be filled in later
available_models = list(model_info.keys()) 

def df_filters(mode_selection_radio, show_open_source_model_only):
    global original_df
    # remove the rows when the model contains "โŒ"
    original_df = original_df[~original_df["Model"].str.contains("โŒ")]

    modes = {
        "greedy": ["greedy"],
        "sampling (Temp=0.5)": ["sampling"],
        "all": ["greedy", "sampling"]
    }
    # filter the df by the mode_selection_radio
    default_main_df = original_df[original_df["Mode"].isin(modes[mode_selection_radio])]
    default_main_df.insert(0, "", range(1, 1 + len(default_main_df)))
    return default_main_df.copy()

def _gstr(text):
    return gr.Text(text, visible=False)

def _tab_leaderboard():
    global original_df, available_models
    # with gr.TabItem("๐Ÿ“Š Main", elem_id="od-benchmark-tab-table-ablation", id=0, elem_classes="subtab"): 
    if True:
        default_main_df = original_df.copy() 
        # default_main_df.insert(0, "", range(1, 1 + len(default_main_df)))
        # default_main_df_no_task = default_main_df.copy() 
        default_mode = "greedy"
        default_main_df = df_filters(default_mode, False)
        with gr.Row(): 
            with gr.Column(scale=5): 
                mode_selection_radio = gr.Radio(["greedy", "all"], show_label=False, elem_id="rank-column-radio", value=default_mode)
        # with gr.Row():
        #     with gr.Column(scale=2):
                
        leaderboard_table = gr.components.Dataframe(
            value=default_main_df,
            datatype= ["number", "markdown", "markdown", "number"],
            # max_rows=None,
            height=6000,
            elem_id="leaderboard-table",
            interactive=False,
            visible=True,
            column_widths=[50, 260, 100, 100, 120, 120, 100,100,110,100],
            wrap=True
            # min_width=60,
        ) 
        # checkbox_show_task_categorized.change(fn=length_margin_change, inputs=[length_margin_choices, gr.Text("main", visible=False), checkbox_show_task_categorized, show_open_source_model_only, rank_column_radio], outputs=[leaderboard_table])
        # show_open_source_model_only.change(fn=length_margin_change, inputs=[length_margin_choices, gr.Text("main", visible=False), checkbox_show_task_categorized, show_open_source_model_only, rank_column_radio], outputs=[leaderboard_table])
        # rank_column_radio.change(fn=length_margin_change, inputs=[length_margin_choices, gr.Text("main", visible=False), checkbox_show_task_categorized, show_open_source_model_only, rank_column_radio], outputs=[leaderboard_table])
        mode_selection_radio.change(fn=df_filters, inputs=[mode_selection_radio, _gstr("")], outputs=[leaderboard_table])


def sample_explore_item(model_name, size_H, size_W):
    # print(model_name, size_H, size_W)
    explore_item = get_random_item(model_name, size_H, size_W)
    if explore_item is None:
        return "No item found", "No item found", "No item found", "No item found"
    model_name = explore_item['Model']
    example_id = explore_item['id']
    puzzle_md = f"### ๐Ÿฆ“ Puzzle [{example_id}]:\n\n" + explore_item['puzzle'].replace("## Clues:", "### **Clues:**").replace("\n", "<br>")
    model_reasoning_md = f"### ๐Ÿค– Reasoning of {model_name}:\n\n {explore_item['reasoning']}"
    model_prediction_md = f"### ๐Ÿ’ฌ Answer of {model_name}:\n\n**Json format:** {str(explore_item['solution']).replace('___', 'null')}" + \
                                        "\n\n**Table format:**\n" + explore_item['solution_table_md']
    puzzle_solved = explore_item['correct_cells'] == explore_item['total_cells']
    cell_acc = explore_item["correct_cells"] / explore_item["total_cells"] * 100
    model_eval_md = f"### ๐Ÿ†š Evaluation:\n\n  **Total Cells**: {explore_item['total_cells']} | **Correct Cells**: {explore_item['correct_cells']} | **Puzzle solved**: {puzzle_solved} | **Cell Acc**: {cell_acc:.2f}%"
    turht_solution_md = f"### โœ… Truth Solution:\n\n{explore_item['truth_solution_table']}"
    return puzzle_md, model_reasoning_md, model_prediction_md, model_eval_md, turht_solution_md


def _tab_explore():
    global raw_data
    model_names = [item["Model"] for item in raw_data]
    # deduplicate and preserve the order
    model_names = list(dict.fromkeys(model_names))
    with gr.Row():
        model_selection = gr.Dropdown(choices = ["random"] + model_names, label="Model: ", elem_id="select-models", value="random", interactive=True)
        size_H_selection = gr.Dropdown(choices = ["random"] + [f"{i}" for i in range(2,7)], label="Num of Houses", elem_id="select-H", value="random", interactive=True)
        size_W_selection = gr.Dropdown(choices = ["random"] + [f"{i}" for i in range(2,7)], label="Num of Features", elem_id="select-W", value="random", interactive=True)
        with gr.Column(scale=1):
            # greedy_or_sample = gr.Radio(["greedy", "sampling"], show_label=False, elem_id="greedy-or-sample", value="greedy", interactive=True)
            gr.Markdown("### ๐Ÿš€ Click below to sample a puzzle. โฌ‡๏ธ ")
            explore_button = gr.Button("๐Ÿฆ“ Sample a Zebra Puzzle!", elem_id="explore-button")
    
    puzzle_md = gr.Markdown("### ๐Ÿฆ“ Puzzle: \n\nTo be loaded", elem_id="puzzle-md", elem_classes="box_md")
    model_reasoning_md = gr.Markdown("### ๐Ÿค– Reasoning: \n\nTo be loaded", elem_id="model-reasoning-md", elem_classes="box_md")
    model_prediction_md = gr.Markdown("### ๐Ÿ’ฌ Answer: \n\nTo be loaded", elem_id="model-prediction-md", elem_classes="box_md")
    turht_solution_md = gr.Markdown("### โœ… Truth Solution: \n\nTo be loaded", elem_id="truth-solution-md", elem_classes="box_md")
    model_eval_md = gr.Markdown("### ๐Ÿ†š Evaluation: \n\nTo be loaded", elem_id="model-eval-md", elem_classes="box_md")
    explore_button.click(fn=sample_explore_item, 
                         inputs=[model_selection, size_H_selection, size_W_selection], 
                         outputs=[puzzle_md, model_reasoning_md, model_prediction_md, model_eval_md, turht_solution_md])



def _tab_submit():
    markdown_text = """
    Please create an issue on our [Github](https://github.com/WildEval/ZeroEval/) repository to talk about your model. Then, we can test it for you and report the results here on the Leaderboard.
    If you would like to do local testing, please read our code [here](https://github.com/WildEval/ZeroEval/blob/main/src/evaluation/zebra_grid_eval.py) 
    and apply for the access for the [private dataset](https://huggingface.co/datasets/allenai/ZebraLogicBench-private) that contains the truth solutions.
    """

    gr.Markdown("## ๐Ÿš€ Submit Your Results\n\n" + markdown_text, elem_classes="markdown-text")



def build_demo():
    global original_df, available_models, gpt4t_dfs, haiku_dfs, llama_dfs

    with gr.Blocks(theme=gr.themes.Soft(), css=css, js=js_light) as demo:
        gr.HTML(BANNER, elem_id="banner")
        # convert LAST_UPDATED to the PDT time 
        LAST_UPDATED = datetime.now(pytz.timezone('US/Pacific')).strftime("%Y-%m-%d %H:%M:%S")
        header_md_text = HEADER_MD.replace("{LAST_UPDATED}", str(LAST_UPDATED))
        gr.Markdown(header_md_text, elem_classes="markdown-text") 

        with gr.Tabs(elem_classes="tab-buttons") as tabs: 
            with gr.TabItem("๐Ÿ… Leaderboard", elem_id="od-benchmark-tab-table", id=0):
                _tab_leaderboard() 
            with gr.TabItem("๐Ÿ” Explore", elem_id="od-benchmark-tab-table", id=1):
                _tab_explore()
            with gr.TabItem("๐Ÿš€ Submit Your Results", elem_id="od-benchmark-tab-table", id=3):
                _tab_submit() 

            with gr.TabItem("๐Ÿ“ฎ About Us", elem_id="od-benchmark-tab-table", id=4):
                gr.Markdown(ABOUT_MD, elem_classes="markdown-text")
        
        with gr.Row():
            with gr.Accordion("๐Ÿ“™ Citation", open=False, elem_classes="accordion-label"):
                gr.Textbox(
                    value=CITATION_TEXT, 
                    lines=7,
                    label="Copy the BibTeX snippet to cite this source",
                    elem_id="citation-button",
                    show_copy_button=True)
                # ).style(show_copy_button=True)

    return demo 



def data_load(result_file):
    global raw_data, original_df
    print(f"Loading {result_file}")
    column_names_main = column_names.copy()
    # column_names_main.update({})
    main_ordered_columns = ORDERED_COLUMN_NAMES 
    # filter the data with Total Puzzles == 1000 
    
    click_url = True 
    # read json file from the result_file 
    with open(result_file, "r") as f:
        raw_data = json.load(f)
    # floatify the data, if possible
    for d in raw_data:
        for k, v in d.items():
            try:
                d[k] = float(v)
            except:
                pass
    original_df = pd.DataFrame(raw_data)
    original_df = original_df[original_df["Total Puzzles"] == 1000]
    original_df = post_processing(original_df, column_names_main, ordered_columns=main_ordered_columns, click_url=click_url, rank_column=RANKING_COLUMN)
    # print(original_df.columns) 
    

if __name__ == "__main__":
    parser = argparse.ArgumentParser()
    parser.add_argument("--share", action="store_true")
    parser.add_argument("--result_file", help="Path to results table", default="ZeroEval-main/result_dirs/zebra-grid.summary.json")
    
    args = parser.parse_args()
    data_load(args.result_file)    
    print(original_df)
    demo = build_demo()
    demo.launch(share=args.share, height=3000, width="100%")