Spaces:
Running
Running
File size: 10,650 Bytes
1c919b3 3d2e59d 1c919b3 3d2e59d 1c919b3 1757118 1c919b3 1757118 d74dfe0 1c919b3 1757118 d74dfe0 1c919b3 1757118 1c919b3 1757118 1c919b3 1757118 1c919b3 eaea101 0f9e3cb 3d2e59d 645b85b 3d2e59d 645b85b c1a5b93 3d2e59d eaea101 3d2e59d eaea101 3d2e59d 645b85b c1a5b93 645b85b 3d2e59d eaea101 c1a5b93 3d2e59d 1c919b3 0f9e3cb 1f16e7a 0f9e3cb 262e137 0f9e3cb 1c919b3 3d2e59d 1c919b3 3d2e59d 1c919b3 b2043a7 1c919b3 3d2e59d 1c919b3 f95f8b0 1c919b3 3d2e59d 1c919b3 3d2e59d 1c919b3 3d2e59d f95f8b0 1c919b3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 |
"""A gradio app that renders a static leaderboard. This is used for Hugging Face Space."""
import ast
import argparse
import glob
import pickle
import plotly
import gradio as gr
import numpy as np
import pandas as pd
import gradio as gr
import pandas as pd
from pathlib import Path
import json
from constants import *
from datetime import datetime, timezone
# from datasets import Dataset, load_dataset, concatenate_datasets
import os, uuid
from utils_display import model_info
from constants import column_names, LEADERBOARD_REMARKS, DEFAULT_K, LEADERBOARD_REMARKS_MAIN
import pytz
from data_utils import post_processing, get_random_item
# get the last updated time from the elo_ranks.all.jsonl file
LAST_UPDATED = None
# with open("_intro.md", "r") as f:
# INTRO_MD = f.read()
INTRO_MD = ""
with open("_about_us.md", "r") as f:
ABOUT_MD = f.read()
with open("_header.md", "r") as f:
HEADER_MD = f.read()
with open("_metrics.md", "r") as f:
METRICS_MD = f.read()
raw_data = None
original_df = None
# available_models = [] # to be filled in later
available_models = list(model_info.keys())
def df_filters(mode_selection_radio, show_open_source_model_only):
global original_df
# remove the rows when the model contains "โ"
original_df = original_df[~original_df["Model"].str.contains("โ")]
modes = {
"greedy": ["greedy"],
"sampling (Temp=0.5)": ["sampling"],
"all": ["greedy", "sampling"]
}
# filter the df by the mode_selection_radio
default_main_df = original_df[original_df["Mode"].isin(modes[mode_selection_radio])]
default_main_df.insert(0, "", range(1, 1 + len(default_main_df)))
return default_main_df.copy()
def _gstr(text):
return gr.Text(text, visible=False)
def _tab_leaderboard():
global original_df, available_models
# with gr.TabItem("๐ Main", elem_id="od-benchmark-tab-table-ablation", id=0, elem_classes="subtab"):
if True:
default_main_df = original_df.copy()
# default_main_df.insert(0, "", range(1, 1 + len(default_main_df)))
# default_main_df_no_task = default_main_df.copy()
default_mode = "greedy"
default_main_df = df_filters(default_mode, False)
with gr.Row():
with gr.Column(scale=5):
mode_selection_radio = gr.Radio(["greedy", "all"], show_label=False, elem_id="rank-column-radio", value=default_mode)
# with gr.Row():
# with gr.Column(scale=2):
leaderboard_table = gr.components.Dataframe(
value=default_main_df,
datatype= ["number", "markdown", "markdown", "number"],
# max_rows=None,
height=6000,
elem_id="leaderboard-table",
interactive=False,
visible=True,
column_widths=[50, 260, 100, 100, 120, 120, 100,100,110,100],
wrap=True
# min_width=60,
)
# checkbox_show_task_categorized.change(fn=length_margin_change, inputs=[length_margin_choices, gr.Text("main", visible=False), checkbox_show_task_categorized, show_open_source_model_only, rank_column_radio], outputs=[leaderboard_table])
# show_open_source_model_only.change(fn=length_margin_change, inputs=[length_margin_choices, gr.Text("main", visible=False), checkbox_show_task_categorized, show_open_source_model_only, rank_column_radio], outputs=[leaderboard_table])
# rank_column_radio.change(fn=length_margin_change, inputs=[length_margin_choices, gr.Text("main", visible=False), checkbox_show_task_categorized, show_open_source_model_only, rank_column_radio], outputs=[leaderboard_table])
mode_selection_radio.change(fn=df_filters, inputs=[mode_selection_radio, _gstr("")], outputs=[leaderboard_table])
def sample_explore_item(model_name, size_H, size_W):
# print(model_name, size_H, size_W)
explore_item = get_random_item(model_name, size_H, size_W)
if explore_item is None:
return "No item found", "No item found", "No item found", "No item found"
model_name = explore_item['Model']
example_id = explore_item['id']
puzzle_md = f"### ๐ฆ Puzzle [{example_id}]:\n\n" + explore_item['puzzle'].replace("## Clues:", "### **Clues:**").replace("\n", "<br>")
model_reasoning_md = f"### ๐ค Reasoning of {model_name}:\n\n {explore_item['reasoning']}"
model_prediction_md = f"### ๐ฌ Answer of {model_name}:\n\n**Json format:** {str(explore_item['solution']).replace('___', 'null')}" + \
"\n\n**Table format:**\n" + explore_item['solution_table_md']
puzzle_solved = explore_item['correct_cells'] == explore_item['total_cells']
cell_acc = explore_item["correct_cells"] / explore_item["total_cells"] * 100
model_eval_md = f"### ๐ Evaluation:\n\n **Total Cells**: {explore_item['total_cells']} | **Correct Cells**: {explore_item['correct_cells']} | **Puzzle solved**: {puzzle_solved} | **Cell Acc**: {cell_acc:.2f}%"
turht_solution_md = f"### โ
Truth Solution:\n\n{explore_item['truth_solution_table']}"
return puzzle_md, model_reasoning_md, model_prediction_md, model_eval_md, turht_solution_md
def _tab_explore():
global raw_data
model_names = [item["Model"] for item in raw_data]
# deduplicate and preserve the order
model_names = list(dict.fromkeys(model_names))
with gr.Row():
model_selection = gr.Dropdown(choices = ["random"] + model_names, label="Model: ", elem_id="select-models", value="random", interactive=True)
size_H_selection = gr.Dropdown(choices = ["random"] + [f"{i}" for i in range(2,7)], label="Num of Houses", elem_id="select-H", value="random", interactive=True)
size_W_selection = gr.Dropdown(choices = ["random"] + [f"{i}" for i in range(2,7)], label="Num of Features", elem_id="select-W", value="random", interactive=True)
with gr.Column(scale=1):
# greedy_or_sample = gr.Radio(["greedy", "sampling"], show_label=False, elem_id="greedy-or-sample", value="greedy", interactive=True)
gr.Markdown("### ๐ Click below to sample a puzzle. โฌ๏ธ ")
explore_button = gr.Button("๐ฆ Sample a Zebra Puzzle!", elem_id="explore-button")
puzzle_md = gr.Markdown("### ๐ฆ Puzzle: \n\nTo be loaded", elem_id="puzzle-md", elem_classes="box_md")
model_reasoning_md = gr.Markdown("### ๐ค Reasoning: \n\nTo be loaded", elem_id="model-reasoning-md", elem_classes="box_md")
model_prediction_md = gr.Markdown("### ๐ฌ Answer: \n\nTo be loaded", elem_id="model-prediction-md", elem_classes="box_md")
turht_solution_md = gr.Markdown("### โ
Truth Solution: \n\nTo be loaded", elem_id="truth-solution-md", elem_classes="box_md")
model_eval_md = gr.Markdown("### ๐ Evaluation: \n\nTo be loaded", elem_id="model-eval-md", elem_classes="box_md")
explore_button.click(fn=sample_explore_item,
inputs=[model_selection, size_H_selection, size_W_selection],
outputs=[puzzle_md, model_reasoning_md, model_prediction_md, model_eval_md, turht_solution_md])
def _tab_submit():
markdown_text = """
Please create an issue on our [Github](https://github.com/WildEval/ZeroEval/) repository to talk about your model. Then, we can test it for you and report the results here on the Leaderboard.
If you would like to do local testing, please read our code [here](https://github.com/WildEval/ZeroEval/blob/main/src/evaluation/zebra_grid_eval.py)
and apply for the access for the [private dataset](https://huggingface.co/datasets/allenai/ZebraLogicBench-private) that contains the truth solutions.
"""
gr.Markdown("## ๐ Submit Your Results\n\n" + markdown_text, elem_classes="markdown-text")
def build_demo():
global original_df, available_models, gpt4t_dfs, haiku_dfs, llama_dfs
with gr.Blocks(theme=gr.themes.Soft(), css=css, js=js_light) as demo:
gr.HTML(BANNER, elem_id="banner")
# convert LAST_UPDATED to the PDT time
LAST_UPDATED = datetime.now(pytz.timezone('US/Pacific')).strftime("%Y-%m-%d %H:%M:%S")
header_md_text = HEADER_MD.replace("{LAST_UPDATED}", str(LAST_UPDATED))
gr.Markdown(header_md_text, elem_classes="markdown-text")
with gr.Tabs(elem_classes="tab-buttons") as tabs:
with gr.TabItem("๐
Leaderboard", elem_id="od-benchmark-tab-table", id=0):
_tab_leaderboard()
with gr.TabItem("๐ Explore", elem_id="od-benchmark-tab-table", id=1):
_tab_explore()
with gr.TabItem("๐ Submit Your Results", elem_id="od-benchmark-tab-table", id=3):
_tab_submit()
with gr.TabItem("๐ฎ About Us", elem_id="od-benchmark-tab-table", id=4):
gr.Markdown(ABOUT_MD, elem_classes="markdown-text")
with gr.Row():
with gr.Accordion("๐ Citation", open=False, elem_classes="accordion-label"):
gr.Textbox(
value=CITATION_TEXT,
lines=7,
label="Copy the BibTeX snippet to cite this source",
elem_id="citation-button",
show_copy_button=True)
# ).style(show_copy_button=True)
return demo
def data_load(result_file):
global raw_data, original_df
print(f"Loading {result_file}")
column_names_main = column_names.copy()
# column_names_main.update({})
main_ordered_columns = ORDERED_COLUMN_NAMES
# filter the data with Total Puzzles == 1000
click_url = True
# read json file from the result_file
with open(result_file, "r") as f:
raw_data = json.load(f)
# floatify the data, if possible
for d in raw_data:
for k, v in d.items():
try:
d[k] = float(v)
except:
pass
original_df = pd.DataFrame(raw_data)
original_df = original_df[original_df["Total Puzzles"] == 1000]
original_df = post_processing(original_df, column_names_main, ordered_columns=main_ordered_columns, click_url=click_url, rank_column=RANKING_COLUMN)
# print(original_df.columns)
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("--share", action="store_true")
parser.add_argument("--result_file", help="Path to results table", default="ZeroEval-main/result_dirs/zebra-grid.summary.json")
args = parser.parse_args()
data_load(args.result_file)
print(original_df)
demo = build_demo()
demo.launch(share=args.share, height=3000, width="100%")
|