File size: 6,467 Bytes
1c919b3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1757118
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1c919b3
1757118
1c919b3
 
1757118
 
 
 
 
 
 
1c919b3
 
 
 
1757118
1c919b3
 
 
 
 
 
1757118
1c919b3
 
 
 
 
 
1757118
 
1c919b3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
"""A gradio app that renders a static leaderboard. This is used for Hugging Face Space."""
import ast
import argparse
import glob
import pickle
import plotly
import gradio as gr
import numpy as np
import pandas as pd
import gradio as gr
import pandas as pd
from pathlib import Path
import json
from constants import *
from datetime import datetime, timezone 
# from datasets import Dataset, load_dataset, concatenate_datasets
import os, uuid 
from utils_display import model_info
from constants import column_names,  LEADERBOARD_REMARKS, DEFAULT_K, LEADERBOARD_REMARKS_MAIN
import pytz
from data_utils import post_processing

# get the last updated time from the elo_ranks.all.jsonl file
LAST_UPDATED = None 
# with open("_intro.md", "r") as f:
#     INTRO_MD = f.read()
INTRO_MD = ""
with open("_about_us.md", "r") as f:
    ABOUT_MD = f.read()

with open("_header.md", "r") as f:
    HEADER_MD = f.read()

with open("_metrics.md", "r") as f:
    METRICS_MD = f.read()
 
original_df = None  
# available_models = [] # to be filled in later
available_models = list(model_info.keys()) 

def df_filters(mode_selection_radio, show_open_source_model_only):
    global original_df
    # remove the rows when the model contains "โŒ"
    original_df = original_df[~original_df["Model"].str.contains("โŒ")]

    modes = {
        "greedy": ["greedy"],
        "sampling (Temp=0.5)": ["sampling"],
        "all": ["greedy", "sampling"]
    }
    # filter the df by the mode_selection_radio
    default_main_df = original_df[original_df["Mode"].isin(modes[mode_selection_radio])]
    default_main_df.insert(0, "", range(1, 1 + len(default_main_df)))
    return default_main_df.copy()

def _gstr(text):
    return gr.Text(text, visible=False)

def _tab_leaderboard():
    global original_df, available_models
    with gr.TabItem("๐Ÿ“Š Main", elem_id="od-benchmark-tab-table-ablation", id=0, elem_classes="subtab"): 
        default_main_df = original_df.copy() 
        # default_main_df.insert(0, "", range(1, 1 + len(default_main_df)))
        # default_main_df_no_task = default_main_df.copy() 
        default_mode = "greedy"
        default_main_df = df_filters(default_mode, False)
        with gr.Row(): 
            with gr.Column(scale=5): 
                mode_selection_radio = gr.Radio(["greedy", "sampling (Temp=0.5)", "all"], show_label=False, elem_id="rank-column-radio", value=default_mode)
        # with gr.Row():
        #     with gr.Column(scale=2):
                
        leaderboard_table = gr.components.Dataframe(
            value=default_main_df,
            datatype= ["number", "markdown", "markdown", "number"],
            # max_rows=None,
            height=6000,
            elem_id="leaderboard-table",
            interactive=False,
            visible=True,
            column_widths=[50, 260, 100, 100, 120, 120, 100,100,110,100],
            wrap=True
            # min_width=60,
        ) 
        # checkbox_show_task_categorized.change(fn=length_margin_change, inputs=[length_margin_choices, gr.Text("main", visible=False), checkbox_show_task_categorized, show_open_source_model_only, rank_column_radio], outputs=[leaderboard_table])
        # show_open_source_model_only.change(fn=length_margin_change, inputs=[length_margin_choices, gr.Text("main", visible=False), checkbox_show_task_categorized, show_open_source_model_only, rank_column_radio], outputs=[leaderboard_table])
        # rank_column_radio.change(fn=length_margin_change, inputs=[length_margin_choices, gr.Text("main", visible=False), checkbox_show_task_categorized, show_open_source_model_only, rank_column_radio], outputs=[leaderboard_table])
        mode_selection_radio.change(fn=df_filters, inputs=[mode_selection_radio, _gstr("")], outputs=[leaderboard_table])


 
def _tab_submit():
    pass


def build_demo():
    global original_df, available_models, gpt4t_dfs, haiku_dfs, llama_dfs

    with gr.Blocks(theme=gr.themes.Soft(), css=css, js=js_light) as demo:
        gr.HTML(BANNER, elem_id="banner")
        # convert LAST_UPDATED to the PDT time 
        LAST_UPDATED = datetime.now(pytz.timezone('US/Pacific')).strftime("%Y-%m-%d %H:%M:%S")
        # header_md_text = HEADER_MD.replace("{model_num}", str(len(original_df["-1"]))).replace("{LAST_UPDATED}", str(LAST_UPDATED))
        # gr.Markdown(header_md_text, elem_classes="markdown-text") 

        with gr.Tabs(elem_classes="tab-buttons") as tabs: 
            with gr.TabItem("๐Ÿ… Leaderboard", elem_id="od-benchmark-tab-table", id=0):
                _tab_leaderboard() 

            with gr.TabItem("๐Ÿš€ Submit Your Results", elem_id="od-benchmark-tab-table", id=3):
                _tab_submit() 

            with gr.TabItem("๐Ÿ“ฎ About Us", elem_id="od-benchmark-tab-table", id=4):
                gr.Markdown(ABOUT_MD, elem_classes="markdown-text")
        
        with gr.Row():
            with gr.Accordion("๐Ÿ“™ Citation", open=False, elem_classes="accordion-label"):
                gr.Textbox(
                    value=CITATION_TEXT, 
                    lines=7,
                    label="Copy the BibTeX snippet to cite this source",
                    elem_id="citation-button",
                    show_copy_button=True)
                # ).style(show_copy_button=True)

    return demo 



def data_load(result_file):
    global original_df
    print(f"Loading {result_file}")
    column_names_main = column_names.copy()
    # column_names_main.update({})
    main_ordered_columns = ORDERED_COLUMN_NAMES 
    click_url = True 
    # read json file from the result_file 
    with open(result_file, "r") as f:
        data = json.load(f)
    # floatify the data, if possible
    for d in data:
        for k, v in d.items():
            try:
                d[k] = float(v)
            except:
                pass
    original_df = pd.DataFrame(data)
    original_df = post_processing(original_df, column_names_main, ordered_columns=main_ordered_columns, click_url=click_url, rank_column=RANKING_COLUMN)
    # print(original_df.columns) 
    

if __name__ == "__main__":
    parser = argparse.ArgumentParser()
    parser.add_argument("--share", action="store_true")
    parser.add_argument("--result_file", help="Path to results table", default="ZeroEval-main/result_dirs/zebra-grid.summary.json")
    
    args = parser.parse_args()
    data_load(args.result_file)    
    print(original_df)
    demo = build_demo()
    demo.launch(share=args.share, height=3000, width="100%")