from clearvoice import ClearVoice # Import the ClearVoice class for speech processing tasks if __name__ == '__main__': ## ----------------- Demo One: Using a Single Model ---------------------- if True: # This block demonstrates how to use a single model for speech enhancement # Initialize ClearVoice for the task of speech enhancement using the MossFormerGAN_SE_16K model myClearVoice = ClearVoice(task='speech_enhancement', model_names=['MossFormerGAN_SE_16K']) # 1st calling method: # Process an input waveform and return the enhanced output waveform # - input_path: Path to the input noisy audio file (input.wav) # - The returned value is the enhanced output waveform output_wav = myClearVoice(input_path='input.wav') # Write the processed waveform to an output file # - output_wav: The enhanced waveform data # - output_path: Path to save the enhanced audio file (output.wav) myClearVoice.write(output_wav, output_path='output.wav') # 2nd calling method: # Process and write audio files directly # - input_path: Directory of input noisy audio files # - online_write=True: Enables writing the enhanced audio directly to files during processing # - output_path: Directory where the enhanced audio files will be saved myClearVoice(input_path='path_to_input_wavs', online_write=True, output_path='path_to_output_wavs') # 3rd calling method: # Use an .scp file to specify input audio paths # - input_path: Path to an .scp file listing multiple audio file paths # - online_write=True: Directly writes the enhanced output during processing # - output_path: Directory to save the enhanced output files myClearVoice(input_path='data/cv_webrtc_test_set_20200521_16k.scp', online_write=True, output_path='path_to_output_waves') ## ---------------- Demo Two: Using Multiple Models ----------------------- if False: # This block demonstrates using multiple models for speech enhancement # Initialize ClearVoice for the task of speech enhancement using two models: FRCRN_SE_16K and MossFormerGAN_SE_16K myClearVoice = ClearVoice(task='speech_enhancement', model_names=['FRCRN_SE_16K', 'MossFormerGAN_SE_16K']) # 1st calling method: # Process an input waveform using the multiple models and return the enhanced output waveform # - input_path: Path to the input noisy audio file (input.wav) # - The returned value is the enhanced output waveform after being processed by the models output_wav = myClearVoice(input_path='input.wav') # Write the processed waveform to an output file # - output_wav: The enhanced waveform data # - output_path: Path to save the enhanced audio file (output.wav) myClearVoice.write(output_wav, output_path='output.wav') # 2nd calling method: # Process and write audio files directly using multiple models # - input_path: Directory of input noisy audio files # - online_write=True: Enables writing the enhanced audio directly to files during processing # - output_path: Directory where the enhanced audio files will be saved myClearVoice(input_path='path_to_input_wavs', online_write=True, output_path='path_to_output_wavs') # 3rd calling method: # Use an .scp file to specify input audio paths for multiple models # - input_path: Path to an .scp file listing multiple audio file paths # - online_write=True: Directly writes the enhanced output during processing # - output_path: Directory to save the enhanced output files myClearVoice(input_path='data/cv_webrtc_test_set_20200521_16k.scp', online_write=True, output_path='path_to_output_waves')