#!/bin/bash mode: 'train' use_cuda: 1 # 1 for True, 0 for False sampling_rate: 16000 network: "FRCRN_SE_16K" ##network type ## FFT Parameters win_type: hanning win_len: 640 win_inc: 320 fft_len: 640 # Train #tr_list: 'datasets/tr_tts_16k_noise_0to10db_p13_p20.lst_dur' tr_list: 'data/cv_webrtc_test_set_20200521_16k.lst' cv_list: 'data/cv_webrtc_test_set_20200521_16k.lst' init_learning_rate: 0.001 #learning rate for a new training finetune_learning_rate: 0.0001 #learning rate for a finetune training max_epoch: 100 weight_decay: 0.00001 clip_grad_norm: 10. # Log seed: 777 # # dataset num_workers: 4 batch_size: 4 accu_grad: 1 # accumulate multiple batch sizes for one back-propagation updating effec_batch_size: 12 # per GPU, only used if accu_grad is set to 1, must be multiple times of batch size max_length: 1 # truncate the utterances in dataloader, in seconds