#!/usr/bin/env python -u # -*- coding: utf-8 -*- # Authors: Shengkui Zhao, Zexu Pan from __future__ import absolute_import from __future__ import division from __future__ import print_function import torch import torch.nn as nn import numpy as np import os import sys import librosa import torchaudio from utils.misc import power_compress, power_uncompress, stft, istft, compute_fbank # Constant for normalizing audio values MAX_WAV_VALUE = 32768.0 def decode_one_audio(model, device, inputs, args): """Decodes audio using the specified model based on the provided network type. This function selects the appropriate decoding function based on the specified network in the arguments and processes the input audio data accordingly. Args: model (nn.Module): The trained model used for decoding. device (torch.device): The device (CPU or GPU) to perform computations on. inputs (torch.Tensor): Input audio tensor. args (Namespace): Contains arguments for network configuration. Returns: list: A list of decoded audio outputs for each speaker. """ # Select decoding function based on the network type specified in args if args.network == 'FRCRN_SE_16K': return decode_one_audio_frcrn_se_16k(model, device, inputs, args) elif args.network == 'MossFormer2_SE_48K': return decode_one_audio_mossformer2_se_48k(model, device, inputs, args) elif args.network == 'MossFormerGAN_SE_16K': return decode_one_audio_mossformergan_se_16k(model, device, inputs, args) elif args.network == 'MossFormer2_SS_16K': return decode_one_audio_mossformer2_ss_16k(model, device, inputs, args) else: print("No network found!") # Print error message if no valid network is specified return def decode_one_audio_mossformer2_ss_16k(model, device, inputs, args): """Decodes audio using the MossFormer2 model for speech separation at 16kHz. This function handles the audio decoding process by processing the input tensor in segments, if necessary, and applies the model to obtain separated audio outputs. Args: model (nn.Module): The trained MossFormer2 model for decoding. device (torch.device): The device (CPU or GPU) to perform computations on. inputs (torch.Tensor): Input audio tensor of shape (B, T), where B is the batch size and T is the number of time steps. args (Namespace): Contains arguments for decoding configuration. Returns: list: A list of decoded audio outputs for each speaker. """ out = [] # Initialize the list to store outputs decode_do_segment = False # Flag to determine if segmentation is needed window = args.sampling_rate * args.decode_window # Decoding window length stride = int(window * 0.75) # Decoding stride if segmentation is used b, t = inputs.shape # Get batch size and input length # Check if input length exceeds one-time decode length to decide on segmentation if t > args.sampling_rate * args.one_time_decode_length: decode_do_segment = True # Enable segment decoding for long sequences # Pad the inputs to ensure they meet the decoding window length requirements if t < window: inputs = np.concatenate([inputs, np.zeros((inputs.shape[0], window - t))], axis=1) elif t < window + stride: padding = window + stride - t inputs = np.concatenate([inputs, np.zeros((inputs.shape[0], padding))], axis=1) else: if (t - window) % stride != 0: padding = t - (t - window) // stride * stride inputs = np.concatenate([inputs, np.zeros((inputs.shape[0], padding))], axis=1) inputs = torch.from_numpy(np.float32(inputs)).to(device) # Convert inputs to torch tensor and move to device b, t = inputs.shape # Update batch size and input length after conversion # Process the inputs in segments if necessary if decode_do_segment: outputs = np.zeros((args.num_spks, t)) # Initialize output array for each speaker give_up_length = (window - stride) // 2 # Calculate length to give up at each segment current_idx = 0 # Initialize current index for segmentation while current_idx + window <= t: tmp_input = inputs[:, current_idx:current_idx + window] # Get segment input tmp_out_list = model(tmp_input) # Forward pass through the model for spk in range(args.num_spks): # Convert output for the current speaker to numpy tmp_out_list[spk] = tmp_out_list[spk][0, :].detach().cpu().numpy() if current_idx == 0: # For the first segment, use the whole segment minus the give-up length outputs[spk, current_idx:current_idx + window - give_up_length] = tmp_out_list[spk][:-give_up_length] else: # For subsequent segments, account for the give-up length at both ends outputs[spk, current_idx + give_up_length:current_idx + window - give_up_length] = tmp_out_list[spk][give_up_length:-give_up_length] current_idx += stride # Move to the next segment for spk in range(args.num_spks): out.append(outputs[spk, :]) # Append outputs for each speaker else: # If no segmentation is required, process the entire input out_list = model(inputs) for spk in range(args.num_spks): out.append(out_list[spk][0, :].detach().cpu().numpy()) # Append output for each speaker # Normalize the outputs to the maximum absolute value for each speaker max_abs = 0 for spk in range(args.num_spks): if max_abs < max(abs(out[spk])): max_abs = max(abs(out[spk])) for spk in range(args.num_spks): out[spk] = out[spk] / max_abs # Normalize output by max absolute value return out # Return the list of normalized outputs def decode_one_audio_frcrn_se_16k(model, device, inputs, args): """Decodes audio using the FRCRN model for speech enhancement at 16kHz. This function processes the input audio tensor either in segments or as a whole, depending on the length of the input. The model's inference method is applied to obtain the enhanced audio output. Args: model (nn.Module): The trained FRCRN model used for decoding. device (torch.device): The device (CPU or GPU) to perform computations on. inputs (torch.Tensor): Input audio tensor of shape (B, T), where B is the batch size and T is the number of time steps. args (Namespace): Contains arguments for decoding configuration. Returns: numpy.ndarray: The decoded audio output, which has been enhanced by the model. """ decode_do_segment = False # Flag to determine if segmentation is needed window = args.sampling_rate * args.decode_window # Decoding window length stride = int(window * 0.75) # Decoding stride for segmenting the input b, t = inputs.shape # Get batch size (b) and input length (t) # Check if input length exceeds one-time decode length to decide on segmentation if t > args.sampling_rate * args.one_time_decode_length: decode_do_segment = True # Enable segment decoding for long sequences # Pad the inputs to meet the decoding window length requirements if t < window: # Pad with zeros if the input length is less than the window size inputs = np.concatenate([inputs, np.zeros((inputs.shape[0], window - t))], axis=1) elif t < window + stride: # Pad the input if its length is less than the window plus stride padding = window + stride - t inputs = np.concatenate([inputs, np.zeros((inputs.shape[0], padding))], axis=1) else: # Ensure the input length is a multiple of the stride if (t - window) % stride != 0: padding = t - (t - window) // stride * stride inputs = np.concatenate([inputs, np.zeros((inputs.shape[0], padding))], axis=1) # Convert inputs to a PyTorch tensor and move to the specified device inputs = torch.from_numpy(np.float32(inputs)).to(device) b, t = inputs.shape # Update batch size and input length after conversion # Process the inputs in segments if necessary if decode_do_segment: outputs = np.zeros(t) # Initialize the output array give_up_length = (window - stride) // 2 # Calculate length to give up at each segment current_idx = 0 # Initialize current index for segmentation while current_idx + window <= t: tmp_input = inputs[:, current_idx:current_idx + window] # Get segment input tmp_output = model.inference(tmp_input).detach().cpu().numpy() # Inference on segment # For the first segment, use the whole segment minus the give-up length if current_idx == 0: outputs[current_idx:current_idx + window - give_up_length] = tmp_output[:-give_up_length] else: # For subsequent segments, account for the give-up length outputs[current_idx + give_up_length:current_idx + window - give_up_length] = tmp_output[give_up_length:-give_up_length] current_idx += stride # Move to the next segment else: # If no segmentation is required, process the entire input outputs = model.inference(inputs).detach().cpu().numpy() # Inference on full input return outputs # Return the decoded audio output def decode_one_audio_mossformergan_se_16k(model, device, inputs, args): """Decodes audio using the MossFormerGAN model for speech enhancement at 16kHz. This function processes the input audio tensor either in segments or as a whole, depending on the length of the input. The `_decode_one_audio_mossformergan_se_16k` function is called to perform the model inference and return the enhanced audio output. Args: model (nn.Module): The trained MossFormerGAN model used for decoding. device (torch.device): The device (CPU or GPU) for computation. inputs (torch.Tensor): Input audio tensor of shape (B, T), where B is the batch size and T is the number of time steps. args (Namespace): Contains arguments for decoding configuration. Returns: numpy.ndarray: The decoded audio output, which has been enhanced by the model. """ decode_do_segment = False # Flag to determine if segmentation is needed window = args.sampling_rate * args.decode_window # Decoding window length stride = int(window * 0.75) # Decoding stride for segmenting the input b, t = inputs.shape # Get batch size (b) and input length (t) # Check if input length exceeds one-time decode length to decide on segmentation if t > args.sampling_rate * args.one_time_decode_length: decode_do_segment = True # Enable segment decoding for long sequences # Pad the inputs to meet the decoding window length requirements if t < window: # Pad with zeros if the input length is less than the window size inputs = np.concatenate([inputs, np.zeros((inputs.shape[0], window - t))], axis=1) elif t < window + stride: # Pad the input if its length is less than the window plus stride padding = window + stride - t inputs = np.concatenate([inputs, np.zeros((inputs.shape[0], padding))], axis=1) else: # Ensure the input length is a multiple of the stride if (t - window) % stride != 0: padding = t - (t - window) // stride * stride inputs = np.concatenate([inputs, np.zeros((inputs.shape[0], padding))], axis=1) # Convert inputs to a PyTorch tensor and move to the specified device inputs = torch.from_numpy(np.float32(inputs)).to(device) b, t = inputs.shape # Update batch size and input length after conversion # Process the inputs in segments if necessary if decode_do_segment: outputs = np.zeros(t) # Initialize the output array give_up_length = (window - stride) // 2 # Calculate length to give up at each segment current_idx = 0 # Initialize current index for segmentation while current_idx + window <= t: tmp_input = inputs[:, current_idx:current_idx + window] # Get segment input tmp_output = _decode_one_audio_mossformergan_se_16k(model, device, tmp_input, args) # Inference on segment # For the first segment, use the whole segment minus the give-up length if current_idx == 0: outputs[current_idx:current_idx + window - give_up_length] = tmp_output[:-give_up_length] else: # For subsequent segments, account for the give-up length outputs[current_idx + give_up_length:current_idx + window - give_up_length] = tmp_output[give_up_length:-give_up_length] current_idx += stride # Move to the next segment return outputs # Return the accumulated outputs from segments else: # If no segmentation is required, process the entire input return _decode_one_audio_mossformergan_se_16k(model, device, inputs, args) # Inference on full input def _decode_one_audio_mossformergan_se_16k(model, device, inputs, args): """Processes audio inputs through the MossFormerGAN model for speech enhancement. This function performs the following steps: 1. Pads the input audio tensor to fit the model requirements. 2. Computes a normalization factor for the input tensor. 3. Applies Short-Time Fourier Transform (STFT) to convert the audio into the frequency domain. 4. Processes the STFT representation through the model to predict the real and imaginary components. 5. Uncompresses the predicted spectrogram and applies Inverse STFT (iSTFT) to convert back to time domain audio. 6. Normalizes the output audio. Args: model (nn.Module): The trained MossFormerGAN model used for decoding. device (torch.device): The device (CPU or GPU) for computation. inputs (torch.Tensor): Input audio tensor of shape (B, T), where B is the batch size and T is the number of time steps. args (Namespace): Contains arguments for STFT parameters and normalization. Returns: numpy.ndarray: The decoded audio output, which has been enhanced by the model. """ input_len = inputs.size(-1) # Get the length of the input audio nframe = int(np.ceil(input_len / args.win_inc)) # Calculate the number of frames based on window increment padded_len = nframe * args.win_inc # Calculate the padded length to fit the model padding_len = padded_len - input_len # Determine how much padding is needed # Pad the input audio with the beginning of the input inputs = torch.cat([inputs, inputs[:, :padding_len]], dim=-1) # Compute normalization factor based on the input c = torch.sqrt(inputs.size(-1) / torch.sum((inputs ** 2.0), dim=-1)) # Prepare inputs for STFT by transposing and normalizing inputs = torch.transpose(inputs, 0, 1) # Change shape for STFT inputs = torch.transpose(inputs * c, 0, 1) # Apply normalization factor and transpose back # Perform Short-Time Fourier Transform (STFT) on the normalized inputs inputs_spec = stft(inputs, args, center=True) inputs_spec = inputs_spec.to(torch.float32) # Ensure the spectrogram is in float32 format # Compress the power of the spectrogram to improve model performance inputs_spec = power_compress(inputs_spec).permute(0, 1, 3, 2) # Pass the compressed spectrogram through the model to get predicted real and imaginary parts out_list = model(inputs_spec) pred_real, pred_imag = out_list[0].permute(0, 1, 3, 2), out_list[1].permute(0, 1, 3, 2) # Uncompress the predicted spectrogram to get the magnitude and phase pred_spec_uncompress = power_uncompress(pred_real, pred_imag).squeeze(1) # Perform Inverse STFT (iSTFT) to convert back to time domain audio outputs = istft(pred_spec_uncompress, args) # Normalize the output audio by dividing by the normalization factor outputs = outputs.squeeze(0) / c return outputs[:input_len].detach().cpu().numpy() # Return the output as a numpy array def decode_one_audio_mossformer2_se_48k(model, device, inputs, args): """Processes audio inputs through the MossFormer2 model for speech enhancement at 48kHz. This function decodes audio input using the following steps: 1. Normalizes the audio input to a maximum WAV value. 2. Checks the length of the input to decide between online decoding and batch processing. 3. For longer inputs, processes the audio in segments using a sliding window. 4. Computes filter banks and their deltas for the audio segment. 5. Passes the filter banks through the model to get a predicted mask. 6. Applies the mask to the spectrogram of the audio segment and reconstructs the audio. 7. For shorter inputs, processes them in one go without segmentation. Args: model (nn.Module): The trained MossFormer2 model used for decoding. device (torch.device): The device (CPU or GPU) for computation. inputs (torch.Tensor): Input audio tensor of shape (B, T), where B is the batch size and T is the number of time steps. args (Namespace): Contains arguments for sampling rate, window size, and other parameters. Returns: numpy.ndarray: The decoded audio output, normalized to the range [-1, 1]. """ inputs = inputs[0, :] # Extract the first element from the input tensor input_len = inputs.shape[0] # Get the length of the input audio inputs = inputs * MAX_WAV_VALUE # Normalize the input to the maximum WAV value # Check if input length exceeds the defined threshold for online decoding if input_len > args.sampling_rate * args.one_time_decode_length: # 20 seconds online_decoding = True if online_decoding: window = int(args.sampling_rate * args.decode_window) # Define window length (e.g., 4s for 48kHz) stride = int(window * 0.75) # Define stride length (e.g., 3s for 48kHz) t = inputs.shape[0] # Update length after potential padding # Pad input if necessary to match window size if t < window: inputs = np.concatenate([inputs, np.zeros(window - t)], 0) elif t < window + stride: padding = window + stride - t inputs = np.concatenate([inputs, np.zeros(padding)], 0) else: if (t - window) % stride != 0: padding = t - (t - window) // stride * stride inputs = np.concatenate([inputs, np.zeros(padding)], 0) audio = torch.from_numpy(inputs).type(torch.FloatTensor) # Convert to Torch tensor t = audio.shape[0] # Update length after conversion outputs = torch.from_numpy(np.zeros(t)) # Initialize output tensor give_up_length = (window - stride) // 2 # Determine length to ignore at the edges dfsmn_memory_length = 0 # Placeholder for potential memory length current_idx = 0 # Initialize current index for sliding window # Process audio in sliding window segments while current_idx + window <= t: # Select appropriate segment of audio for processing if current_idx < dfsmn_memory_length: audio_segment = audio[0:current_idx + window] else: audio_segment = audio[current_idx - dfsmn_memory_length:current_idx + window] # Compute filter banks for the audio segment fbanks = compute_fbank(audio_segment.unsqueeze(0), args) # Compute deltas for filter banks fbank_tr = torch.transpose(fbanks, 0, 1) # Transpose for delta computation fbank_delta = torchaudio.functional.compute_deltas(fbank_tr) # First-order delta fbank_delta_delta = torchaudio.functional.compute_deltas(fbank_delta) # Second-order delta # Transpose back to original shape fbank_delta = torch.transpose(fbank_delta, 0, 1) fbank_delta_delta = torch.transpose(fbank_delta_delta, 0, 1) # Concatenate the original filter banks with their deltas fbanks = torch.cat([fbanks, fbank_delta, fbank_delta_delta], dim=1) fbanks = fbanks.unsqueeze(0).to(device) # Add batch dimension and move to device # Pass filter banks through the model Out_List = model(fbanks) pred_mask = Out_List[-1] # Get the predicted mask from the output # Apply STFT to the audio segment spectrum = stft(audio_segment, args) pred_mask = pred_mask.permute(2, 1, 0) # Permute dimensions for masking masked_spec = spectrum.cpu() * pred_mask.detach().cpu() # Apply mask to the spectrum masked_spec_complex = masked_spec[:, :, 0] + 1j * masked_spec[:, :, 1] # Convert to complex form # Reconstruct audio from the masked spectrogram output_segment = istft(masked_spec_complex, args, len(audio_segment)) # Store the output segment in the output tensor if current_idx == 0: outputs[current_idx:current_idx + window - give_up_length] = output_segment[:-give_up_length] else: output_segment = output_segment[-window:] # Get the latest window of output outputs[current_idx + give_up_length:current_idx + window - give_up_length] = output_segment[give_up_length:-give_up_length] current_idx += stride # Move to the next segment else: # Process the entire audio at once if it is shorter than the threshold audio = torch.from_numpy(inputs).type(torch.FloatTensor) fbanks = compute_fbank(audio.unsqueeze(0), args) # Compute deltas for filter banks fbank_tr = torch.transpose(fbanks, 0, 1) fbank_delta = torchaudio.functional.compute_deltas(fbank_tr) fbank_delta_delta = torchaudio.functional.compute_deltas(fbank_delta) fbank_delta = torch.transpose(fbank_delta, 0, 1) fbank_delta_delta = torch.transpose(fbank_delta_delta, 0, 1) # Concatenate the original filter banks with their deltas fbanks = torch.cat([fbanks, fbank_delta, fbank_delta_delta], dim=1) fbanks = fbanks.unsqueeze(0).to(device) # Add batch dimension and move to device # Pass filter banks through the model Out_List = model(fbanks) pred_mask = Out_List[-1] # Get the predicted mask spectrum = stft(audio, args) # Apply STFT to the audio pred_mask = pred_mask.permute(2, 1, 0) # Permute dimensions for masking masked_spec = spectrum * pred_mask.detach().cpu() # Apply mask to the spectrum masked_spec_complex = masked_spec[:, :, 0] + 1j * masked_spec[:, :, 1] # Convert to complex form # Reconstruct audio from the masked spectrogram outputs = istft(masked_spec_complex, args, len(audio)) return outputs.numpy() / MAX_WAV_VALUE # Return the output normalized to [-1, 1] def decode_one_audio_AV_MossFormer2_TSE_16K(model, inputs, args): """Processes video inputs through the AV mossformer2 model with Target speaker extraction (TSE) for decoding at 16kHz. This function decodes audio input using the following steps: 1. Checks if the input audio length requires segmentation or can be processed in one go. 2. If the input audio is long enough, processes it in overlapping segments using a sliding window approach. 3. Applies the model to each segment or the entire input, and collects the output. Args: model (nn.Module): The trained SpEx model for speech enhancement. inputs (numpy.ndarray): Input audio and visual data args (Namespace): Contains arguments for sampling rate, window size, and other parameters. Returns: numpy.ndarray: The decoded audio output as a NumPy array. """ audio, visual = inputs max_val = np.max(np.abs(audio)) if max_val > 1: audio /= max_val b, t = audio.shape # Get batch size (b) and input length (t) decode_do_segement = False # Flag to determine if segmentation is needed # Check if the input length exceeds the defined threshold for segmentation if t > args.sampling_rate * args.one_time_decode_length: decode_do_segement = True # Enable segmentation for long inputs # Convert inputs to a PyTorch tensor and move to the specified device audio = torch.from_numpy(np.float32(audio)).to(args.device) visual = torch.from_numpy(np.float32(visual)).to(args.device) print(audio.shape) print(visual.shape) if decode_do_segement: print('********') outputs = np.zeros(t) # Initialize output array window = args.sampling_rate * args.decode_window # Window length for processing window_v = 25 * args.decode_window stride = int(window * 0.6) # Decoding stride for segmenting the input give_up_length = (window - stride) // 2 # Calculate length to give up at each segment current_idx = 0 # Initialize current index for sliding window # Process the audio in overlapping segments while current_idx + window < t: tmp_audio = audio[:, current_idx:current_idx + window] # Select current audio segment current_idx_v = int(current_idx/args.sampling_rate*25) # Select current video segment index tmp_video = visual[:, current_idx_v:current_idx_v + window_v, :, :] # Select current video segment tmp_output = model(tmp_audio, tmp_video).detach().squeeze().cpu().numpy() # Apply model to the segment # For the first segment, use the whole segment minus the give-up length if current_idx == 0: outputs[current_idx:current_idx + window - give_up_length] = tmp_output[:-give_up_length] else: # For subsequent segments, account for the give-up length outputs[current_idx + give_up_length:current_idx + window - give_up_length] = tmp_output[give_up_length:-give_up_length] current_idx += stride # Move to the next segment # Process the last window of audio tmp_audio = audio[:, -window:] tmp_video = visual[:, -window_v:, :, :] tmp_output = model(tmp_audio, tmp_video).detach().squeeze().cpu().numpy() # Apply model to the segment outputs[-window + give_up_length:] = tmp_output[give_up_length:] else: # Process the entire input at once if segmentation is not needed outputs = model(audio, visual).detach().squeeze().cpu().numpy() return outputs # Return the decoded audio output as a NumPy array