""" modified from https://github.com/speechbrain/speechbrain/blob/develop/speechbrain/lobes/models/dual_path.py Author: Shengkui Zhao """ import math import torch import torch.nn as nn import torch.nn.functional as F import copy from models.mossformer2_se.mossformer2_block import ScaledSinuEmbedding, MossformerBlock_GFSMN, MossformerBlock EPS = 1e-8 class GlobalLayerNorm(nn.Module): """Calculate Global Layer Normalization. Arguments --------- dim : (int or list or torch.Size) Input shape from an expected input of size. eps : float A value added to the denominator for numerical stability. elementwise_affine : bool A boolean value that when set to True, this module has learnable per-element affine parameters initialized to ones (for weights) and zeros (for biases). Example ------- >>> x = torch.randn(5, 10, 20) >>> GLN = GlobalLayerNorm(10, 3) >>> x_norm = GLN(x) """ def __init__(self, dim, shape, eps=1e-8, elementwise_affine=True): super(GlobalLayerNorm, self).__init__() self.dim = dim self.eps = eps self.elementwise_affine = elementwise_affine if self.elementwise_affine: if shape == 3: self.weight = nn.Parameter(torch.ones(self.dim, 1)) self.bias = nn.Parameter(torch.zeros(self.dim, 1)) if shape == 4: self.weight = nn.Parameter(torch.ones(self.dim, 1, 1)) self.bias = nn.Parameter(torch.zeros(self.dim, 1, 1)) else: self.register_parameter("weight", None) self.register_parameter("bias", None) def forward(self, x): """Returns the normalized tensor. Arguments --------- x : torch.Tensor Tensor of size [N, C, K, S] or [N, C, L]. """ # x = N x C x K x S or N x C x L # N x 1 x 1 # cln: mean,var N x 1 x K x S # gln: mean,var N x 1 x 1 if x.dim() == 3: mean = torch.mean(x, (1, 2), keepdim=True) var = torch.mean((x - mean) ** 2, (1, 2), keepdim=True) if self.elementwise_affine: x = ( self.weight * (x - mean) / torch.sqrt(var + self.eps) + self.bias ) else: x = (x - mean) / torch.sqrt(var + self.eps) if x.dim() == 4: mean = torch.mean(x, (1, 2, 3), keepdim=True) var = torch.mean((x - mean) ** 2, (1, 2, 3), keepdim=True) if self.elementwise_affine: x = ( self.weight * (x - mean) / torch.sqrt(var + self.eps) + self.bias ) else: x = (x - mean) / torch.sqrt(var + self.eps) return x class CumulativeLayerNorm(nn.LayerNorm): """Calculate Cumulative Layer Normalization. Arguments --------- dim : int Dimension that you want to normalize. elementwise_affine : True Learnable per-element affine parameters. Example ------- >>> x = torch.randn(5, 10, 20) >>> CLN = CumulativeLayerNorm(10) >>> x_norm = CLN(x) """ def __init__(self, dim, elementwise_affine=True): super(CumulativeLayerNorm, self).__init__( dim, elementwise_affine=elementwise_affine, eps=1e-8 ) def forward(self, x): """Returns the normalized tensor. Arguments --------- x : torch.Tensor Tensor size [N, C, K, S] or [N, C, L] """ # x: N x C x K x S or N x C x L # N x K x S x C if x.dim() == 4: x = x.permute(0, 2, 3, 1).contiguous() # N x K x S x C == only channel norm x = super().forward(x) # N x C x K x S x = x.permute(0, 3, 1, 2).contiguous() if x.dim() == 3: x = torch.transpose(x, 1, 2) # N x L x C == only channel norm x = super().forward(x) # N x C x L x = torch.transpose(x, 1, 2) return x def select_norm(norm, dim, shape): """Just a wrapper to select the normalization type. """ if norm == "gln": return GlobalLayerNorm(dim, shape, elementwise_affine=True) if norm == "cln": return CumulativeLayerNorm(dim, elementwise_affine=True) if norm == "ln": return nn.GroupNorm(1, dim, eps=1e-8) else: return nn.BatchNorm1d(dim) class Encoder(nn.Module): """Convolutional Encoder Layer. Arguments --------- kernel_size : int Length of filters. in_channels : int Number of input channels. out_channels : int Number of output channels. Example ------- >>> x = torch.randn(2, 1000) >>> encoder = Encoder(kernel_size=4, out_channels=64) >>> h = encoder(x) >>> h.shape torch.Size([2, 64, 499]) """ def __init__(self, kernel_size=2, out_channels=64, in_channels=1): super(Encoder, self).__init__() self.conv1d = nn.Conv1d( in_channels=in_channels, out_channels=out_channels, kernel_size=kernel_size, stride=kernel_size // 2, groups=1, bias=False, ) self.in_channels = in_channels def forward(self, x): """Return the encoded output. Arguments --------- x : torch.Tensor Input tensor with dimensionality [B, L]. Return ------ x : torch.Tensor Encoded tensor with dimensionality [B, N, T_out]. where B = Batchsize L = Number of timepoints N = Number of filters T_out = Number of timepoints at the output of the encoder """ # B x L -> B x 1 x L if self.in_channels == 1: x = torch.unsqueeze(x, dim=1) # B x 1 x L -> B x N x T_out x = self.conv1d(x) x = F.relu(x) return x class Decoder(nn.ConvTranspose1d): """A decoder layer that consists of ConvTranspose1d. Arguments --------- kernel_size : int Length of filters. in_channels : int Number of input channels. out_channels : int Number of output channels. Example --------- >>> x = torch.randn(2, 100, 1000) >>> decoder = Decoder(kernel_size=4, in_channels=100, out_channels=1) >>> h = decoder(x) >>> h.shape torch.Size([2, 1003]) """ def __init__(self, *args, **kwargs): super(Decoder, self).__init__(*args, **kwargs) def forward(self, x): """Return the decoded output. Arguments --------- x : torch.Tensor Input tensor with dimensionality [B, N, L]. where, B = Batchsize, N = number of filters L = time points """ if x.dim() not in [2, 3]: raise RuntimeError( "{} accept 3/4D tensor as input".format(self.__name__) ) x = super().forward(x if x.dim() == 3 else torch.unsqueeze(x, 1)) if torch.squeeze(x).dim() == 1: x = torch.squeeze(x, dim=1) else: x = torch.squeeze(x) return x class IdentityBlock: """This block is used when we want to have identity transformation within the Dual_path block. Example ------- >>> x = torch.randn(10, 100) >>> IB = IdentityBlock() >>> xhat = IB(x) """ def _init__(self, **kwargs): pass def __call__(self, x): return x class MossFormerM(nn.Module): """This class implements the transformer encoder based on MossFormer2 layers. Arguments --------- num_blocks : int Number of mossformer2 blocks to include. d_model : int The dimension of the input embedding. attn_dropout : float Dropout for the self-attention (Optional). group_size: int the chunk size for segmenting sequence query_key_dim: int the attention vector dimension expansion_factor: int the expansion factor for the linear projection in conv module causal: bool true for causal / false for non causal Example ------- >>> import torch >>> x = torch.rand((8, 60, 512)) >>> net = MossFormerM(num_blocks=8, d_model=512) >>> output, _ = net(x) >>> output.shape torch.Size([8, 60, 512]) """ def __init__( self, num_blocks, d_model=None, causal=False, group_size = 256, query_key_dim = 128, expansion_factor = 4., attn_dropout = 0.1 ): super().__init__() self.mossformerM = MossformerBlock_GFSMN( dim=d_model, depth=num_blocks, group_size=group_size, query_key_dim=query_key_dim, expansion_factor=expansion_factor, causal=causal, attn_dropout=attn_dropout ) self.norm = nn.LayerNorm(d_model, eps=1e-6) def forward( self, src, ): """ Arguments ---------- src : torch.Tensor Tensor shape [B, L, N], where, B = Batchsize, L = time points N = number of filters The sequence to the encoder layer (required). src_mask : tensor The mask for the src sequence (optional). src_key_padding_mask : tensor The mask for the src keys per batch (optional). """ output = self.mossformerM(src) output = self.norm(output) return output class MossFormerM2(nn.Module): """This class implements the transformer encoder. Arguments --------- num_blocks : int Number of mossformer blocks to include. d_model : int The dimension of the input embedding. attn_dropout : float Dropout for the self-attention (Optional). group_size: int the chunk size query_key_dim: int the attention vector dimension expansion_factor: int the expansion factor for the linear projection in conv module causal: bool true for causal / false for non causal Example ------- >>> import torch >>> x = torch.rand((8, 60, 512)) >>> net = MossFormerM2(num_blocks=8, d_model=512) >>> output, _ = net(x) >>> output.shape torch.Size([8, 60, 512]) """ def __init__( self, num_blocks, d_model=None, causal=False, group_size = 256, query_key_dim = 128, expansion_factor = 4., attn_dropout = 0.1 ): super().__init__() self.mossformerM = MossformerBlock( dim=d_model, depth=num_blocks, group_size=group_size, query_key_dim=query_key_dim, expansion_factor=expansion_factor, causal=causal, attn_dropout=attn_dropout ) self.norm = nn.LayerNorm(d_model, eps=1e-6) def forward( self, src, ): """ Arguments ---------- src : torch.Tensor Tensor shape [B, L, N], where, B = Batchsize, L = time points N = number of filters The sequence to the encoder layer (required). src_mask : tensor The mask for the src sequence (optional). src_key_padding_mask : tensor The mask for the src keys per batch (optional). """ output = self.mossformerM(src) output = self.norm(output) return output class Computation_Block(nn.Module): """Computation block for dual-path processing. Arguments --------- out_channels : int Dimensionality of model output. norm : str Normalization type. skip_around_intra : bool Skip connection around the intra layer. Example --------- >>> comp_block = Computation_Block(64) >>> x = torch.randn(10, 64, 100) >>> x = comp_block(x) >>> x.shape torch.Size([10, 64, 100]) """ def __init__( self, num_blocks, out_channels, norm="ln", skip_around_intra=True, ): super(Computation_Block, self).__init__() ##Default MossFormer2 model self.intra_mdl = MossFormerM(num_blocks=num_blocks, d_model=out_channels) ##The previous MossFormer model #self.intra_mdl = MossFormerM2(num_blocks=num_blocks, d_model=out_channels) self.skip_around_intra = skip_around_intra # Norm self.norm = norm if norm is not None: self.intra_norm = select_norm(norm, out_channels, 3) def forward(self, x): """Returns the output tensor. Arguments --------- x : torch.Tensor Input tensor of dimension [B, N, S]. Return --------- out: torch.Tensor Output tensor of dimension [B, N, S]. where, B = Batchsize, N = number of filters S = sequence time index """ B, N, S = x.shape # [B, S, N] intra = x.permute(0, 2, 1).contiguous() intra = self.intra_mdl(intra) # [B, N, S] intra = intra.permute(0, 2, 1).contiguous() if self.norm is not None: intra = self.intra_norm(intra) # [B, N, S] if self.skip_around_intra: intra = intra + x out = intra return out class MossFormer_MaskNet(nn.Module): """ The MossFormer MaskNet for mask prediction. This class is designed for predicting masks used in source separation tasks. It processes input tensors through various layers including convolutional layers, normalization, and a computation block to produce the final output. Arguments --------- in_channels : int Number of channels at the output of the encoder. out_channels : int Number of channels that would be inputted to the MossFormer2 blocks. out_channels_final : int Number of channels that are finally outputted. num_blocks : int Number of layers in the Dual Computation Block. norm : str Normalization type ('ln' for LayerNorm, 'bn' for BatchNorm, etc.). num_spks : int Number of sources (speakers). skip_around_intra : bool If True, applies skip connections around intra-block connections. use_global_pos_enc : bool If True, uses global positional encodings. max_length : int Maximum sequence length for input tensors. Example --------- >>> mossformer_masknet = MossFormer_MaskNet(64, 64, out_channels_final=8, num_spks=2) >>> x = torch.randn(10, 64, 2000) # Example input >>> x = mossformer_masknet(x) # Forward pass >>> x.shape # Expected output shape torch.Size([10, 2, 64, 2000]) """ def __init__( self, in_channels, out_channels, out_channels_final, num_blocks=24, norm="ln", num_spks=2, skip_around_intra=True, use_global_pos_enc=True, max_length=20000, ): super(MossFormer_MaskNet, self).__init__() # Initialize instance variables self.num_spks = num_spks # Number of sources self.num_blocks = num_blocks # Number of computation blocks self.norm = select_norm(norm, in_channels, 3) # Select normalization type self.conv1d_encoder = nn.Conv1d(in_channels, out_channels, 1, bias=False) # Encoder convolutional layer self.use_global_pos_enc = use_global_pos_enc # Flag for global positional encoding if self.use_global_pos_enc: self.pos_enc = ScaledSinuEmbedding(out_channels) # Initialize positional embedding # Define the computation block self.mdl = Computation_Block( num_blocks, out_channels, norm, skip_around_intra=skip_around_intra, ) # Output layers self.conv1d_out = nn.Conv1d(out_channels, out_channels * num_spks, kernel_size=1) # For multiple speakers self.conv1_decoder = nn.Conv1d(out_channels, out_channels_final, 1, bias=False) # Decoder layer self.prelu = nn.PReLU() # Activation function self.activation = nn.ReLU() # Final activation function # Gated output layers self.output = nn.Sequential( nn.Conv1d(out_channels, out_channels, 1), nn.Tanh() # Non-linear activation ) self.output_gate = nn.Sequential( nn.Conv1d(out_channels, out_channels, 1), nn.Sigmoid() # Gating mechanism ) def forward(self, x): """Returns the output tensor. Arguments --------- x : torch.Tensor Input tensor of dimension [B, N, S], where B is the batch size, N is the number of channels, and S is the sequence length. Returns ------- out : torch.Tensor Output tensor of dimension [B, spks, N, S], where spks is the number of sources (speakers) and is ordered such that the first index corresponds to the target speech. """ # Normalize the input # [B, N, L] x = self.norm(x) # Apply encoder convolution # [B, N, L] x = self.conv1d_encoder(x) if self.use_global_pos_enc: base = x # Store the base for adding positional embedding x = x.transpose(1, -1) # Change shape to [B, L, N] for positional encoding emb = self.pos_enc(x) # Get positional embeddings emb = emb.transpose(0, -1) # Change back to [B, N, L] x = base + emb # Add positional embeddings to the base # Process through the computation block # [B, N, S] x = self.mdl(x) x = self.prelu(x) # Apply activation # Expand to multiple speakers # [B, N*spks, S] x = self.conv1d_out(x) B, _, S = x.shape # Unpack the batch size and sequence length # Reshape to [B*spks, N, S] # This prepares the output for gating # [B*spks, N, S] x = x.view(B * self.num_spks, -1, S) # Apply gated output layers # [B*spks, N, S] x = self.output(x) * self.output_gate(x) # Element-wise multiplication for gating # Decode to final output # [B*spks, N, S] x = self.conv1_decoder(x) # Reshape to [B, spks, N, S] for output # [B, spks, N, S] _, N, L = x.shape x = x.view(B, self.num_spks, N, L) # Final reshaping for output x = self.activation(x) # Apply final activation # Transpose to [spks, B, N, S] for output # return the 1st spk signal as the target speech x = x.transpose(0, 1) return x[0].transpose(1, 2) # Return only the first speaker's signal