""" modified from https://github.com/speechbrain/speechbrain/blob/develop/speechbrain/lobes/models/dual_path.py #Author: Shengkui Zhao """ import math import torch import torch.nn as nn import torch.nn.functional as F import copy from models.mossformer2_ss.mossformer2_block import ScaledSinuEmbedding, MossformerBlock_GFSMN, MossformerBlock EPS = 1e-8 class GlobalLayerNorm(nn.Module): """Calculate Global Layer Normalization. Arguments --------- dim : (int or list or torch.Size) Input shape from an expected input of size. eps : float A value added to the denominator for numerical stability. elementwise_affine : bool A boolean value that when set to True, this module has learnable per-element affine parameters initialized to ones (for weights) and zeros (for biases). Example ------- >>> x = torch.randn(5, 10, 20) >>> GLN = GlobalLayerNorm(10, 3) >>> x_norm = GLN(x) """ def __init__(self, dim, shape, eps=1e-8, elementwise_affine=True): super(GlobalLayerNorm, self).__init__() self.dim = dim self.eps = eps self.elementwise_affine = elementwise_affine if self.elementwise_affine: if shape == 3: self.weight = nn.Parameter(torch.ones(self.dim, 1)) self.bias = nn.Parameter(torch.zeros(self.dim, 1)) if shape == 4: self.weight = nn.Parameter(torch.ones(self.dim, 1, 1)) self.bias = nn.Parameter(torch.zeros(self.dim, 1, 1)) else: self.register_parameter("weight", None) self.register_parameter("bias", None) def forward(self, x): """Returns the normalized tensor. Arguments --------- x : torch.Tensor Tensor of size [N, C, K, S] or [N, C, L]. """ # x = N x C x K x S or N x C x L # N x 1 x 1 # cln: mean,var N x 1 x K x S # gln: mean,var N x 1 x 1 if x.dim() == 3: mean = torch.mean(x, (1, 2), keepdim=True) var = torch.mean((x - mean) ** 2, (1, 2), keepdim=True) if self.elementwise_affine: x = ( self.weight * (x - mean) / torch.sqrt(var + self.eps) + self.bias ) else: x = (x - mean) / torch.sqrt(var + self.eps) if x.dim() == 4: mean = torch.mean(x, (1, 2, 3), keepdim=True) var = torch.mean((x - mean) ** 2, (1, 2, 3), keepdim=True) if self.elementwise_affine: x = ( self.weight * (x - mean) / torch.sqrt(var + self.eps) + self.bias ) else: x = (x - mean) / torch.sqrt(var + self.eps) return x class CumulativeLayerNorm(nn.LayerNorm): """Calculate Cumulative Layer Normalization. Arguments --------- dim : int Dimension that you want to normalize. elementwise_affine : True Learnable per-element affine parameters. Example ------- >>> x = torch.randn(5, 10, 20) >>> CLN = CumulativeLayerNorm(10) >>> x_norm = CLN(x) """ def __init__(self, dim, elementwise_affine=True): super(CumulativeLayerNorm, self).__init__( dim, elementwise_affine=elementwise_affine, eps=1e-8 ) def forward(self, x): """Returns the normalized tensor. Arguments --------- x : torch.Tensor Tensor size [N, C, K, S] or [N, C, L] """ # x: N x C x K x S or N x C x L # N x K x S x C if x.dim() == 4: x = x.permute(0, 2, 3, 1).contiguous() # N x K x S x C == only channel norm x = super().forward(x) # N x C x K x S x = x.permute(0, 3, 1, 2).contiguous() if x.dim() == 3: x = torch.transpose(x, 1, 2) # N x L x C == only channel norm x = super().forward(x) # N x C x L x = torch.transpose(x, 1, 2) return x def select_norm(norm, dim, shape): """Just a wrapper to select the normalization type. """ if norm == "gln": return GlobalLayerNorm(dim, shape, elementwise_affine=True) if norm == "cln": return CumulativeLayerNorm(dim, elementwise_affine=True) if norm == "ln": return nn.GroupNorm(1, dim, eps=1e-8) else: return nn.BatchNorm1d(dim) class Encoder(nn.Module): """Convolutional Encoder Layer. Arguments --------- kernel_size : int Length of filters. in_channels : int Number of input channels. out_channels : int Number of output channels. Example ------- >>> x = torch.randn(2, 1000) >>> encoder = Encoder(kernel_size=4, out_channels=64) >>> h = encoder(x) >>> h.shape torch.Size([2, 64, 499]) """ def __init__(self, kernel_size=2, out_channels=64, in_channels=1): super(Encoder, self).__init__() self.conv1d = nn.Conv1d( in_channels=in_channels, out_channels=out_channels, kernel_size=kernel_size, stride=kernel_size // 2, groups=1, bias=False, ) self.in_channels = in_channels def forward(self, x): """Return the encoded output. Arguments --------- x : torch.Tensor Input tensor with dimensionality [B, L]. Return ------ x : torch.Tensor Encoded tensor with dimensionality [B, N, T_out]. where B = Batchsize L = Number of timepoints N = Number of filters T_out = Number of timepoints at the output of the encoder """ # B x L -> B x 1 x L if self.in_channels == 1: x = torch.unsqueeze(x, dim=1) # B x 1 x L -> B x N x T_out x = self.conv1d(x) x = F.relu(x) return x class Decoder(nn.ConvTranspose1d): """A decoder layer that consists of ConvTranspose1d. Arguments --------- kernel_size : int Length of filters. in_channels : int Number of input channels. out_channels : int Number of output channels. Example --------- >>> x = torch.randn(2, 100, 1000) >>> decoder = Decoder(kernel_size=4, in_channels=100, out_channels=1) >>> h = decoder(x) >>> h.shape torch.Size([2, 1003]) """ def __init__(self, *args, **kwargs): super(Decoder, self).__init__(*args, **kwargs) def forward(self, x): """Return the decoded output. Arguments --------- x : torch.Tensor Input tensor with dimensionality [B, N, L]. where, B = Batchsize, N = number of filters L = time points """ if x.dim() not in [2, 3]: raise RuntimeError( "{} accept 3/4D tensor as input".format(self.__name__) ) x = super().forward(x if x.dim() == 3 else torch.unsqueeze(x, 1)) if torch.squeeze(x).dim() == 1: x = torch.squeeze(x, dim=1) else: x = torch.squeeze(x) return x class IdentityBlock: """This block is used when we want to have identity transformation within the Dual_path block. Example ------- >>> x = torch.randn(10, 100) >>> IB = IdentityBlock() >>> xhat = IB(x) """ def _init__(self, **kwargs): pass def __call__(self, x): return x class MossFormerM(nn.Module): """This class implements the MossFormer2 block. Arguments --------- num_blocks : int Number of mossformer blocks to include. d_model : int The dimension of the input embedding. attn_dropout : float Dropout for the self-attention (Optional). group_size: int the chunk size query_key_dim: int the attention vector dimension expansion_factor: int the expansion factor for the linear projection in conv module causal: bool true for causal / false for non causal Example ------- >>> import torch >>> x = torch.rand((8, 60, 512)) >>> net = MossFormerM(num_blocks=8, d_model=512) >>> output, _ = net(x) >>> output.shape torch.Size([8, 60, 512]) """ def __init__( self, num_blocks, d_model=None, causal=False, group_size = 256, query_key_dim = 128, expansion_factor = 4., attn_dropout = 0.1 ): super().__init__() self.mossformerM = MossformerBlock_GFSMN( dim=d_model, depth=num_blocks, group_size=group_size, query_key_dim=query_key_dim, expansion_factor=expansion_factor, causal=causal, attn_dropout=attn_dropout ) self.norm = nn.LayerNorm(d_model, eps=1e-6) def forward( self, src, ): """ Arguments ---------- src : torch.Tensor Tensor shape [B, L, N], where, B = Batchsize, L = time points N = number of filters The sequence to the encoder layer (required). src_mask : tensor The mask for the src sequence (optional). src_key_padding_mask : tensor The mask for the src keys per batch (optional). """ output = self.mossformerM(src) output = self.norm(output) return output class MossFormerM2(nn.Module): """This class implements the MossFormer block. Arguments --------- num_blocks : int Number of mossformer blocks to include. d_model : int The dimension of the input embedding. attn_dropout : float Dropout for the self-attention (Optional). group_size: int the chunk size query_key_dim: int the attention vector dimension expansion_factor: int the expansion factor for the linear projection in conv module causal: bool true for causal / false for non causal Example ------- >>> import torch >>> x = torch.rand((8, 60, 512)) >>> net = MossFormerM2(num_blocks=8, d_model=512) >>> output, _ = net(x) >>> output.shape torch.Size([8, 60, 512]) """ def __init__( self, num_blocks, d_model=None, causal=False, group_size = 256, query_key_dim = 128, expansion_factor = 4., attn_dropout = 0.1 ): super().__init__() self.mossformerM = MossformerBlock( dim=d_model, depth=num_blocks, group_size=group_size, query_key_dim=query_key_dim, expansion_factor=expansion_factor, causal=causal, attn_dropout=attn_dropout ) self.norm = nn.LayerNorm(d_model, eps=1e-6) def forward( self, src, ): """ Arguments ---------- src : torch.Tensor Tensor shape [B, L, N], where, B = Batchsize, L = time points N = number of filters The sequence to the encoder layer (required). src_mask : tensor The mask for the src sequence (optional). src_key_padding_mask : tensor The mask for the src keys per batch (optional). """ output = self.mossformerM(src) output = self.norm(output) return output class Computation_Block(nn.Module): """Computation block for dual-path processing. Arguments --------- intra_mdl : torch.nn.module Model to process within the chunks. inter_mdl : torch.nn.module Model to process across the chunks. out_channels : int Dimensionality of inter/intra model. norm : str Normalization type. skip_around_intra : bool Skip connection around the intra layer. linear_layer_after_inter_intra : bool Linear layer or not after inter or intra. Example --------- >>> comp_block = Computation_Block(64) >>> x = torch.randn(10, 64, 100) >>> x = comp_block(x) >>> x.shape torch.Size([10, 64, 100]) """ def __init__( self, num_blocks, out_channels, norm="ln", skip_around_intra=True, ): super(Computation_Block, self).__init__() ##MossFormer+: MossFormer with recurrence self.intra_mdl = MossFormerM(num_blocks=num_blocks, d_model=out_channels) ##MossFormerM2: the orignal MossFormer #self.intra_mdl = MossFormerM2(num_blocks=num_blocks, d_model=out_channels) self.skip_around_intra = skip_around_intra # Norm self.norm = norm if norm is not None: self.intra_norm = select_norm(norm, out_channels, 3) def forward(self, x): """Returns the output tensor. Arguments --------- x : torch.Tensor Input tensor of dimension [B, N, S]. Return --------- out: torch.Tensor Output tensor of dimension [B, N, S]. where, B = Batchsize, N = number of filters S = sequence time index """ B, N, S = x.shape # [B, S, N] intra = x.permute(0, 2, 1).contiguous() #.view(B, S, N) intra = self.intra_mdl(intra) # [B, N, S] intra = intra.permute(0, 2, 1).contiguous() if self.norm is not None: intra = self.intra_norm(intra) # [B, N, S] if self.skip_around_intra: intra = intra + x out = intra return out class MossFormer_MaskNet(nn.Module): """The MossFormer MaskNet for predicting mask for encoder output features. The MossFormer2 model uses an upgraded MaskNet structure Arguments --------- in_channels : int Number of channels at the output of the encoder. out_channels : int Number of channels that would be inputted to the intra and inter blocks. intra_model : torch.nn.module Model to process within the chunks. num_layers : int Number of layers of Dual Computation Block. norm : str Normalization type. num_spks : int Number of sources (speakers). skip_around_intra : bool Skip connection around intra. use_global_pos_enc : bool Global positional encodings. max_length : int Maximum sequence length. Example --------- >>> mossformer_masknet = MossFormer_MaskNet(64, 64, num_spks=2) >>> x = torch.randn(10, 64, 2000) >>> x = mossformer_masknet(x) >>> x.shape torch.Size([2, 10, 64, 2000]) """ def __init__( self, in_channels, out_channels, num_blocks=24, norm="ln", num_spks=2, skip_around_intra=True, use_global_pos_enc=True, max_length=20000, ): super(MossFormer_MaskNet, self).__init__() self.num_spks = num_spks self.num_blocks = num_blocks self.norm = select_norm(norm, in_channels, 3) self.conv1d_encoder = nn.Conv1d(in_channels, out_channels, 1, bias=False) self.use_global_pos_enc = use_global_pos_enc if self.use_global_pos_enc: self.pos_enc = ScaledSinuEmbedding(out_channels) self.mdl = Computation_Block( num_blocks, out_channels, norm, skip_around_intra=skip_around_intra, ) self.conv1d_out = nn.Conv1d( out_channels, out_channels * num_spks, kernel_size=1 ) self.conv1_decoder = nn.Conv1d(out_channels, in_channels, 1, bias=False) self.prelu = nn.PReLU() self.activation = nn.ReLU() # gated output layer self.output = nn.Sequential( nn.Conv1d(out_channels, out_channels, 1), nn.Tanh() ) self.output_gate = nn.Sequential( nn.Conv1d(out_channels, out_channels, 1), nn.Sigmoid() ) def forward(self, x): """Returns the output tensor. Arguments --------- x : torch.Tensor Input tensor of dimension [B, N, S]. Returns ------- out : torch.Tensor Output tensor of dimension [spks, B, N, S] where, spks = Number of speakers B = Batchsize, N = number of filters S = the number of time frames """ # before each line we indicate the shape after executing the line # [B, N, L] x = self.norm(x) # [B, N, L] x = self.conv1d_encoder(x) if self.use_global_pos_enc: base = x x = x.transpose(1, -1) emb = self.pos_enc(x) emb = emb.transpose(0, -1) x = base + emb # [B, N, S] x = self.mdl(x) x = self.prelu(x) # [B, N*spks, S] x = self.conv1d_out(x) B, _, S = x.shape # [B*spks, N, S] x = x.view(B * self.num_spks, -1, S) # [B*spks, N, S] x = self.output(x) * self.output_gate(x) # [B*spks, N, S] x = self.conv1_decoder(x) # [B, spks, N, S] _, N, L = x.shape x = x.view(B, self.num_spks, N, L) x = self.activation(x) # [spks, B, N, S] x = x.transpose(0, 1) return x class MossFormer(nn.Module): """ The E2E Encoder-MaskNet-Decoder MossFormer model for speech separation The MossFormer2 model uses an upgraded MaskNet --------- Arguments --------- in_channels : int Number of channels at the output of the encoder. out_channels : int Number of channels that would be inputted to the MossFormer2 blocks. num_layers : int Number of layers of Dual Computation Block. norm : str Normalization type. num_spks : int Number of sources (speakers). skip_around_intra : bool Skip connection around intra. use_global_pos_enc : bool Global positional encodings. max_length : int Maximum sequence length. Example --------- >>> mossformer = MossFormer(num_spks=2) >>> x = torch.randn(1, 10000) >>> x = mossformer(x) >>> x x[0]: torch.Size([1, 10000]) x[1]: torch.Size([1, 10000]) """ def __init__( self, in_channels=512, out_channels=512, num_blocks=24, kernel_size=16, norm="ln", num_spks=2, skip_around_intra=True, use_global_pos_enc=True, max_length=20000, ): super(MossFormer, self).__init__() self.num_spks = num_spks self.enc = Encoder(kernel_size=kernel_size, out_channels=in_channels, in_channels=1) self.mask_net = MossFormer_MaskNet( in_channels=in_channels, out_channels=out_channels, num_blocks=num_blocks, norm=norm, num_spks=num_spks, skip_around_intra=skip_around_intra, use_global_pos_enc=use_global_pos_enc, max_length=max_length, ) self.dec = Decoder( in_channels=out_channels, out_channels=1, kernel_size=kernel_size, stride = kernel_size//2, bias=False ) def forward(self, input): x = self.enc(input) mask = self.mask_net(x) x = torch.stack([x] * self.num_spks) sep_x = x * mask # Decoding est_source = torch.cat( [ self.dec(sep_x[i]).unsqueeze(-1) for i in range(self.num_spks) ], dim=-1, ) T_origin = input.size(1) T_est = est_source.size(1) if T_origin > T_est: est_source = F.pad(est_source, (0, 0, 0, T_origin - T_est)) else: est_source = est_source[:, :T_origin, :] out = [] for spk in range(self.num_spks): out.append(est_source[:,:,spk]) return out class MossFormer2_SS_16K(nn.Module): """MossFormer2 model wrapper for outside calling""" def __init__(self, args): super(MossFormer2_SS_16K, self).__init__() self.model = MossFormer( in_channels=args.encoder_embedding_dim, out_channels=args.mossformer_sequence_dim, num_blocks=args.num_mossformer_layer, kernel_size=args.encoder_kernel_size, norm="ln", num_spks=args.num_spks, skip_around_intra=True, use_global_pos_enc=True, max_length=20000) def forward(self, x): outputs = self.model(x) return outputs