import math import torch import torch.nn.functional as F from torch import nn, einsum from einops import rearrange from rotary_embedding_torch import RotaryEmbedding from models.mossformer_gan_se.conv_module import ConvModule # Helper functions def exists(val): """ Check if a value is not None. Args: val: The value to check. Returns: bool: True if the value exists (is not None), False otherwise. """ return val is not None def default(val, d): """ Return the value if it exists, otherwise return a default value. Args: val: The value to check. d: The default value to return if val is None. Returns: The original value or the default value. """ return val if exists(val) else d def padding_to_multiple_of(n, mult): """ Calculate padding to make a number a multiple of another number. Args: n (int): The number to pad. mult (int): The multiple to pad to. Returns: int: The padding value. """ remainder = n % mult if remainder == 0: return 0 return mult - remainder # ScaleNorm class ScaleNorm(nn.Module): """ Normalization layer that scales inputs based on the dimensionality of the input. Args: dim (int): The input dimension. eps (float): A small value to prevent division by zero (default: 1e-5). """ def __init__(self, dim, eps=1e-5): super().__init__() self.scale = dim ** -0.5 # Scale factor based on input dimension self.eps = eps self.g = nn.Parameter(torch.ones(1)) # Learnable scale parameter def forward(self, x): # Normalize the input along the last dimension and apply scaling norm = torch.norm(x, dim=-1, keepdim=True) * self.scale return x / norm.clamp(min=self.eps) * self.g # Absolute positional encodings class ScaledSinuEmbedding(nn.Module): """ Sine-cosine absolute positional embeddings with scaling. Args: dim (int): The dimension of the positional embedding. """ def __init__(self, dim): super().__init__() self.scale = nn.Parameter(torch.ones(1,)) inv_freq = 1. / (10000 ** (torch.arange(0, dim, 2).float() / dim)) self.register_buffer('inv_freq', inv_freq) # Store frequency values for sine and cosine def forward(self, x): # Generate sine and cosine positional encodings n, device = x.shape[1], x.device t = torch.arange(n, device=device).type_as(self.inv_freq) sinu = einsum('i , j -> i j', t, self.inv_freq) emb = torch.cat((sinu.sin(), sinu.cos()), dim=-1) return emb * self.scale # Apply scaling to the positional embeddings # T5 relative positional bias class T5RelativePositionBias(nn.Module): """ Relative positional bias based on T5 model design. Args: scale (float): Scaling factor for the bias. causal (bool): Whether to apply a causal mask (default: False). num_buckets (int): Number of relative position buckets (default: 32). max_distance (int): Maximum distance for relative positions (default: 128). """ def __init__(self, scale, causal=False, num_buckets=32, max_distance=128): super().__init__() self.eps = 1e-5 self.scale = scale self.causal = causal self.num_buckets = num_buckets self.max_distance = max_distance self.relative_attention_bias = nn.Embedding(num_buckets, 1) # Bias embedding for relative positions @staticmethod def _relative_position_bucket(relative_position, causal=True, num_buckets=32, max_distance=128): """ Bucket relative positions into discrete ranges for bias calculation. Args: relative_position (Tensor): The relative position tensor. causal (bool): Whether to consider causality. num_buckets (int): Number of relative position buckets. max_distance (int): Maximum distance for the position. Returns: Tensor: Bucketed relative positions. """ ret = 0 n = -relative_position if not causal: num_buckets //= 2 ret += (n < 0).long() * num_buckets n = torch.abs(n) else: n = torch.max(n, torch.zeros_like(n)) max_exact = num_buckets // 2 is_small = n < max_exact val_if_large = max_exact + ( torch.log(n.float() / max_exact) / math.log(max_distance / max_exact) * (num_buckets - max_exact) ).long() val_if_large = torch.min(val_if_large, torch.full_like(val_if_large, num_buckets - 1)) ret += torch.where(is_small, n, val_if_large) return ret def forward(self, x): # Calculate relative position bias for attention i, j, device = *x.shape[-2:], x.device q_pos = torch.arange(i, dtype=torch.long, device=device) k_pos = torch.arange(j, dtype=torch.long, device=device) rel_pos = rearrange(k_pos, 'j -> 1 j') - rearrange(q_pos, 'i -> i 1') rp_bucket = self._relative_position_bucket(rel_pos, causal=self.causal, num_buckets=self.num_buckets, max_distance=self.max_distance) values = self.relative_attention_bias(rp_bucket) # Get bias values bias = rearrange(values, 'i j 1 -> i j') return bias * self.scale # Apply scaling to the bias # Relative Position Embeddings class RelativePosition(nn.Module): """ Relative positional embeddings with configurable number of units and max position. Args: num_units (int): The number of embedding units (default: 32). max_relative_position (int): The maximum relative position (default: 128). """ def __init__(self, num_units=32, max_relative_position=128): super().__init__() self.num_units = num_units self.max_relative_position = max_relative_position self.embeddings_table = nn.Parameter(torch.Tensor(max_relative_position * 2 + 1, num_units)) nn.init.xavier_uniform_(self.embeddings_table) # Initialize embedding weights def forward(self, x): # Generate relative position embeddings length_q, length_k, device = *x.shape[-2:], x.device range_vec_q = torch.arange(length_q, dtype=torch.long, device=device) range_vec_k = torch.arange(length_k, dtype=torch.long, device=device) distance_mat = range_vec_k[None, :] - range_vec_q[:, None] # Compute relative distances distance_mat_clipped = torch.clamp(distance_mat, -self.max_relative_position, self.max_relative_position) final_mat = (distance_mat_clipped + self.max_relative_position) embeddings = self.embeddings_table[final_mat] # Get embeddings based on distances return embeddings # Offset and Scale module class OffsetScale(nn.Module): """ Offset and scale operation applied across heads and dimensions. Args: dim (int): Input dimensionality. heads (int): Number of attention heads (default: 1). """ def __init__(self, dim, heads=1): super().__init__() self.gamma = nn.Parameter(torch.ones(heads, dim)) # Learnable scaling parameter self.beta = nn.Parameter(torch.zeros(heads, dim)) # Learnable offset parameter nn.init.normal_(self.gamma, std=0.02) # Initialize gamma with small random values def forward(self, x): # Apply offset and scale across heads out = einsum('... d, h d -> ... h d', x, self.gamma) + self.beta return out.unbind(dim=-2) # Return the result unbound along the last head dimension class FFConvM(nn.Module): """ FFConvM is a feedforward convolutional module that applies a series of transformations to an input tensor. The transformations include normalization, linear projection, activation, convolution, and dropout. It combines feedforward layers with a convolutional module to enhance the feature extraction process. Args: dim_in: Input feature dimension. dim_out: Output feature dimension. norm_klass: Normalization class to apply (default is LayerNorm). dropout: Dropout probability to prevent overfitting (default is 0.1). """ def __init__( self, dim_in, # Input feature dimension dim_out, # Output feature dimension norm_klass=nn.LayerNorm, # Normalization class (default: LayerNorm) dropout=0.1 # Dropout probability ): super().__init__() # Sequentially apply normalization, linear transformation, activation, convolution, and dropout self.mdl = nn.Sequential( norm_klass(dim_in), # Apply normalization (LayerNorm by default) nn.Linear(dim_in, dim_out), # Linear projection from dim_in to dim_out nn.SiLU(), # Activation function (SiLU - Sigmoid Linear Unit) ConvModule(dim_out), # Apply convolution using ConvModule nn.Dropout(dropout) # Apply dropout for regularization ) def forward(self, x): """ Forward pass through the module. Args: x: Input tensor of shape (batch_size, seq_length, dim_in) Returns: output: Transformed output tensor of shape (batch_size, seq_length, dim_out) """ output = self.mdl(x) # Pass the input through the sequential model return output # Return the processed output class MossFormer(nn.Module): """ The MossFormer class implements a transformer-based model designed for handling triple-attention mechanisms with both quadratic and linear attention components. The model processes inputs through token shifts, multi-head attention, and gated feedforward layers, while optionally supporting causal operations. Args: dim (int): Dimensionality of input features. group_size (int): Size of the group dimension for attention. query_key_dim (int): Dimensionality of the query and key vectors for attention. expansion_factor (float): Expansion factor for the hidden dimensions. causal (bool): Whether to apply causal masking for autoregressive tasks. dropout (float): Dropout rate for regularization. norm_klass (nn.Module): Normalization layer to be applied. shift_tokens (bool): Whether to apply token shifting as a preprocessing step. """ def __init__( self, dim, group_size = 256, query_key_dim = 128, expansion_factor = 4., causal = False, dropout = 0.1, norm_klass = nn.LayerNorm, shift_tokens = True ): super().__init__() hidden_dim = int(dim * expansion_factor) self.group_size = group_size self.causal = causal self.shift_tokens = shift_tokens # Positional embeddings for attention. self.rotary_pos_emb = RotaryEmbedding(dim = min(32, query_key_dim)) # Dropout layer for regularization. self.dropout = nn.Dropout(dropout) # Projection layers for input features to hidden dimensions. self.to_hidden = FFConvM( dim_in = dim, dim_out = hidden_dim, norm_klass = norm_klass, dropout = dropout, ) self.to_qk = FFConvM( dim_in = dim, dim_out = query_key_dim, norm_klass = norm_klass, dropout = dropout, ) self.qk_offset_scale = OffsetScale(query_key_dim, heads = 4) # Output projection layer to return to original feature dimensions. self.to_out = FFConvM( dim_in = dim * int(expansion_factor // 2), dim_out = dim, norm_klass = norm_klass, dropout = dropout, ) self.gateActivate = nn.Sigmoid() def forward( self, x, *, mask = None ): """ Forward pass for the MossFormer module. Args: x (Tensor): Input tensor of shape (B, T, Q, C) where: B = batch size, T = total sequence length, Q = number of query features, C = feature dimension. mask (Tensor, optional): Attention mask for padding. Returns: Tensor: Output tensor of shape (B, T, C). """ # Unpack input dimensions B, T, Q, C = x.size() x = x.view(B*T, Q, C) # Reshape input for processing # Prenormalization step normed_x = x # Optionally shift tokens for better performance residual = x # Store residual for skip connection if self.shift_tokens: # Split and shift tokens for enhanced information flow x_shift, x_pass = normed_x.chunk(2, dim = -1) x_shift = F.pad(x_shift, (0, 0, 1, -1), value = 0.) # Pad to maintain shape normed_x = torch.cat((x_shift, x_pass), dim = -1) # Initial projections to hidden space v, u = self.to_hidden(normed_x).chunk(2, dim = -1) # Split into two tensors qk = self.to_qk(normed_x) # Project to query/key dimensions # Offset and scale for attention quad_q, lin_q, quad_k, lin_k = self.qk_offset_scale(qk) att_v, att_u = self.cal_attention(x, quad_q, lin_q, quad_k, lin_k, v, u, B) # Gate the outputs and apply skip connection out = (att_u * v) * self.gateActivate(att_v * u) x = x + self.to_out(out) # Combine with residual return x def cal_attention(self, x, quad_q, lin_q, quad_k, lin_k, v, u, B, mask = None): """ Calculates both quadratic and linear attention outputs. Args: x (Tensor): Input tensor of shape (B, n, d). quad_q (Tensor): Quadratic queries tensor. lin_q (Tensor): Linear queries tensor. quad_k (Tensor): Quadratic keys tensor. lin_k (Tensor): Linear keys tensor. v (Tensor): Value tensor for attention. u (Tensor): Auxiliary tensor for attention. B (int): Batch size. mask (Tensor, optional): Attention mask for padding. Returns: Tuple[Tensor, Tensor]: Quadratic and linear attention outputs. """ b, n, device, g = x.shape[0], x.shape[-2], x.device, self.group_size if exists(mask): # Apply mask to linear keys if provided lin_mask = rearrange(mask, '... -> ... 1') lin_k = lin_k.masked_fill(~lin_mask, 0.) # Rotate queries and keys using positional embeddings if exists(self.rotary_pos_emb): quad_q, lin_q, quad_k, lin_k = map(self.rotary_pos_emb.rotate_queries_or_keys, (quad_q, lin_q, quad_k, lin_k)) # Padding to handle groups padding = padding_to_multiple_of(n, n) if padding > 0: # Pad tensors to accommodate group sizes quad_q, quad_k, lin_q, lin_k, v, u = map(lambda t: F.pad(t, (0, 0, 0, padding), value = 0.), (quad_q, quad_k, lin_q, lin_k, v, u)) mask = default(mask, torch.ones((b, n), device = device, dtype = torch.bool)) mask = F.pad(mask, (0, padding), value = False) # Reshape for grouped attention quad_q, quad_k, lin_q, lin_k, v, u = map(lambda t: rearrange(t, 'b (g n) d -> b g n d', n = n), (quad_q, quad_k, lin_q, lin_k, v, u)) BT, K, Q, C = quad_q.size() quad_q_c = quad_q.view(B, -1, Q, C).transpose(2, 1) # Prepare for computation quad_k_c = quad_k.view(B, -1, Q, C).transpose(2, 1) v_c = v.view(B, -1, Q, C).transpose(2, 1) u_c = u.view(B, -1, Q, C).transpose(2, 1) if exists(mask): mask = rearrange(mask, 'b (g j) -> b g 1 j', j = n) # Adjust mask dimensions # Calculate quadratic attention output sim = einsum('... i d, ... j d -> ... i j', quad_q, quad_k) / n sim_c = einsum('... i d, ... j d -> ... i j', quad_q_c, quad_k_c) / quad_q_c.shape[-2] # Avoid introducing infinite loss probability attn = F.relu(sim) ** 2 attn = self.dropout(attn) # Apply dropout for regularization attn_c = F.relu(sim_c) ** 2 attn_c = self.dropout(attn_c) # Apply dropout for the computed attention mask_c = torch.eye(quad_q_c.shape[-2], dtype = torch.bool, device = device) attn_c = attn_c.masked_fill(mask_c, 0.) # Mask diagonal for attention if exists(mask): attn = attn.masked_fill(~mask, 0.) # Apply the mask to the main attention if self.causal: # Create a causal mask for the attention causal_mask = torch.ones((g, g), dtype = torch.bool, device = device).triu(1) attn = attn.masked_fill(causal_mask, 0.) # Apply causal mask # Calculate the output for quadratic attention quad_out_v = einsum('... i j, ... j d -> ... i d', attn, v) quad_out_u = einsum('... i j, ... j d -> ... i d', attn, u) # Calculate output for the causal quadratic attention quad_out_v_c = einsum('... i j, ... j d -> ... i d', attn_c, v_c) quad_out_u_c = einsum('... i j, ... j d -> ... i d', attn_c, u_c) quad_out_v_c = quad_out_v_c.transpose(2, 1).contiguous().view(BT, K, Q, C) quad_out_u_c = quad_out_u_c.transpose(2, 1).contiguous().view(BT, K, Q, C) # Combine the outputs from quadratic attention quad_out_v = quad_out_v + quad_out_v_c quad_out_u = quad_out_u + quad_out_u_c # Calculate linear attention output if self.causal: # Handle causal linear attention lin_kv = einsum('b g n d, b g n e -> b g d e', lin_k, v) / n lin_kv = lin_kv.cumsum(dim = 1) # Exclusive cumulative sum lin_kv = F.pad(lin_kv, (0, 0, 0, 0, 1, -1), value = 0.) lin_out_v = einsum('b g d e, b g n d -> b g n e', lin_kv, lin_q) lin_ku = einsum('b g n d, b g n e -> b g d e', lin_k, u) / n lin_ku = lin_ku.cumsum(dim = 1) # Exclusive cumulative sum lin_ku = F.pad(lin_ku, (0, 0, 0, 0, 1, -1), value = 0.) lin_out_u = einsum('b g d e, b g n d -> b g n e', lin_ku, lin_q) else: # Handle non-causal linear attention lin_kv = einsum('b g n d, b g n e -> b d e', lin_k, v) / n lin_out_v = einsum('b g n d, b d e -> b g n e', lin_q, lin_kv) lin_ku = einsum('b g n d, b g n e -> b d e', lin_k, u) / n lin_out_u = einsum('b g n d, b d e -> b g n e', lin_q, lin_ku) # Reshape and excise out padding quad_attn_out_v, lin_attn_out_v = map(lambda t: rearrange(t, 'b g n d -> b (g n) d')[:, :n], (quad_out_v, lin_out_v)) quad_attn_out_u, lin_attn_out_u = map(lambda t: rearrange(t, 'b g n d -> b (g n) d')[:, :n], (quad_out_u, lin_out_u)) return quad_attn_out_v + lin_attn_out_v, quad_attn_out_u + lin_attn_out_u