""" Implementation for MossFormer2 block This source code is rewritten by Shengkui Zhao based on https://github.com/lucidrains/FLASH-pytorch """ import math import torch import torch.nn.functional as F from torch import nn, einsum from torchinfo import summary from einops import rearrange from rotary_embedding_torch import RotaryEmbedding from models.mossformer2_ss.conv_module import ConvModule, GLU, FFConvM_Dilated from models.mossformer2_ss.fsmn import UniDeepFsmn, UniDeepFsmn_dilated from models.mossformer2_ss.layer_norm import CLayerNorm, GLayerNorm, GlobLayerNorm, ILayerNorm # functions def identity(t, *args, **kwargs): return t def append_dims(x, num_dims): if num_dims <= 0: return x return x.view(*x.shape, *((1,) * num_dims)) def exists(val): return val is not None def default(val, d): return val if exists(val) else d def padding_to_multiple_of(n, mult): remainder = n % mult if remainder == 0: return 0 return mult - remainder # scalenorm class ScaleNorm(nn.Module): def __init__(self, dim, eps = 1e-5): super().__init__() self.scale = dim ** -0.5 self.eps = eps self.g = nn.Parameter(torch.ones(1)) def forward(self, x): norm = torch.norm(x, dim = -1, keepdim = True) * self.scale return x / norm.clamp(min = self.eps) * self.g # absolute positional encodings class ScaledSinuEmbedding(nn.Module): def __init__(self, dim): super().__init__() self.scale = nn.Parameter(torch.ones(1,)) inv_freq = 1. / (10000 ** (torch.arange(0, dim, 2).float() / dim)) self.register_buffer('inv_freq', inv_freq) def forward(self, x): n, device = x.shape[1], x.device t = torch.arange(n, device = device).type_as(self.inv_freq) sinu = einsum('i , j -> i j', t, self.inv_freq) emb = torch.cat((sinu.sin(), sinu.cos()), dim = -1) return emb * self.scale class OffsetScale(nn.Module): def __init__(self, dim, heads = 1): super().__init__() self.gamma = nn.Parameter(torch.ones(heads, dim)) self.beta = nn.Parameter(torch.zeros(heads, dim)) nn.init.normal_(self.gamma, std = 0.02) def forward(self, x): out = einsum('... d, h d -> ... h d', x, self.gamma) + self.beta return out.unbind(dim = -2) class FFConvM(nn.Module): def __init__( self, dim_in, dim_out, norm_klass = nn.LayerNorm, dropout = 0.1 ): super().__init__() self.mdl = nn.Sequential( norm_klass(dim_in), nn.Linear(dim_in, dim_out), nn.SiLU(), ConvModule(dim_out), nn.Dropout(dropout) ) def forward( self, x, ): output = self.mdl(x) return output class GroupLinear(nn.Module): def __init__( self, dim_in, dim_out, K = 4 ): super().__init__() hidden = dim_in // 2 self.group_conv = nn.Conv1d(dim_in, hidden, groups=dim_in//K, kernel_size=1) self.norm = nn.LayerNorm(hidden) self.linear = nn.Linear(hidden, dim_out) def forward( self, x, ): x1 = x.transpose(2,1) conv_out = self.group_conv(x1) x2 = self.norm(conv_out.transpose(2,1)) x3 = self.linear(x2) return x3 class FFConvM_Small(nn.Module): def __init__( self, dim_in, dim_out, norm_klass = nn.LayerNorm, dropout = 0.1, reduction = 4 ): super().__init__() self.mdl = nn.Sequential( norm_klass(dim_in), GroupLinear(dim_in, dim_out), nn.SiLU(), ConvModule(dim_out), nn.Dropout(dropout) ) def forward( self, x, ): output = self.mdl(x) return output class FFM(nn.Module): def __init__( self, dim_in, dim_out, norm_klass = nn.LayerNorm, dropout = 0.1 ): super().__init__() self.mdl = nn.Sequential( norm_klass(dim_in), nn.Linear(dim_in, dim_out), nn.SiLU(), nn.Dropout(dropout) ) def forward( self, x, ): output = self.mdl(x) return output class FLASH_ShareA_FFConvM(nn.Module): def __init__( self, *, dim, group_size = 256, query_key_dim = 128, expansion_factor = 1., causal = False, dropout = 0.1, rotary_pos_emb = None, norm_klass = nn.LayerNorm, shift_tokens = True ): super().__init__() hidden_dim = int(dim * expansion_factor) self.group_size = group_size self.causal = causal self.shift_tokens = shift_tokens # positional embeddings self.rotary_pos_emb = rotary_pos_emb # norm self.dropout = nn.Dropout(dropout) # projections self.to_hidden = FFConvM( dim_in = dim, dim_out = hidden_dim, norm_klass = norm_klass, dropout = dropout, ) self.to_qk = FFConvM( dim_in = dim, dim_out = query_key_dim, norm_klass = norm_klass, dropout = dropout, ) self.qk_offset_scale = OffsetScale(query_key_dim, heads = 4) self.to_out = FFConvM( dim_in = dim*2, dim_out = dim, norm_klass = norm_klass, dropout = dropout, ) self.gateActivate=nn.Sigmoid() def forward( self, x, *, mask = None ): """ b - batch n - sequence length (within groups) g - group dimension d - feature dimension (keys) e - feature dimension (values) i - sequence dimension (source) j - sequence dimension (target) """ # prenorm #x = self.fsmn(x) normed_x = x #self.norm(x) # do token shift - a great, costless trick from an independent AI researcher in Shenzhen residual = x if self.shift_tokens: x_shift, x_pass = normed_x.chunk(2, dim = -1) x_shift = F.pad(x_shift, (0, 0, 1, -1), value = 0.) normed_x = torch.cat((x_shift, x_pass), dim = -1) # initial projections v, u = self.to_hidden(normed_x).chunk(2, dim = -1) qk = self.to_qk(normed_x) # offset and scale quad_q, lin_q, quad_k, lin_k = self.qk_offset_scale(qk) att_v, att_u = self.cal_attention(x, quad_q, lin_q, quad_k, lin_k, v, u) out = (att_u*v ) * self.gateActivate(att_v*u) x = x + self.to_out(out) return x def cal_attention(self, x, quad_q, lin_q, quad_k, lin_k, v, u, mask = None): b, n, device, g = x.shape[0], x.shape[-2], x.device, self.group_size if exists(mask): lin_mask = rearrange(mask, '... -> ... 1') lin_k = lin_k.masked_fill(~lin_mask, 0.) # rotate queries and keys if exists(self.rotary_pos_emb): quad_q, lin_q, quad_k, lin_k = map(self.rotary_pos_emb.rotate_queries_or_keys, (quad_q, lin_q, quad_k, lin_k)) # padding for groups padding = padding_to_multiple_of(n, g) if padding > 0: quad_q, quad_k, lin_q, lin_k, v, u = map(lambda t: F.pad(t, (0, 0, 0, padding), value = 0.), (quad_q, quad_k, lin_q, lin_k, v, u)) mask = default(mask, torch.ones((b, n), device = device, dtype = torch.bool)) mask = F.pad(mask, (0, padding), value = False) # group along sequence quad_q, quad_k, lin_q, lin_k, v, u = map(lambda t: rearrange(t, 'b (g n) d -> b g n d', n = self.group_size), (quad_q, quad_k, lin_q, lin_k, v, u)) if exists(mask): mask = rearrange(mask, 'b (g j) -> b g 1 j', j = g) # calculate quadratic attention output sim = einsum('... i d, ... j d -> ... i j', quad_q, quad_k) / g attn = F.relu(sim) ** 2 attn = self.dropout(attn) if exists(mask): attn = attn.masked_fill(~mask, 0.) if self.causal: causal_mask = torch.ones((g, g), dtype = torch.bool, device = device).triu(1) attn = attn.masked_fill(causal_mask, 0.) quad_out_v = einsum('... i j, ... j d -> ... i d', attn, v) quad_out_u = einsum('... i j, ... j d -> ... i d', attn, u) # calculate linear attention output if self.causal: lin_kv = einsum('b g n d, b g n e -> b g d e', lin_k, v) / g # exclusive cumulative sum along group dimension lin_kv = lin_kv.cumsum(dim = 1) lin_kv = F.pad(lin_kv, (0, 0, 0, 0, 1, -1), value = 0.) lin_out_v = einsum('b g d e, b g n d -> b g n e', lin_kv, lin_q) lin_ku = einsum('b g n d, b g n e -> b g d e', lin_k, u) / g # exclusive cumulative sum along group dimension lin_ku = lin_ku.cumsum(dim = 1) lin_ku = F.pad(lin_ku, (0, 0, 0, 0, 1, -1), value = 0.) lin_out_u = einsum('b g d e, b g n d -> b g n e', lin_ku, lin_q) else: lin_kv = einsum('b g n d, b g n e -> b d e', lin_k, v) / n lin_out_v = einsum('b g n d, b d e -> b g n e', lin_q, lin_kv) lin_ku = einsum('b g n d, b g n e -> b d e', lin_k, u) / n lin_out_u = einsum('b g n d, b d e -> b g n e', lin_q, lin_ku) # fold back groups into full sequence, and excise out padding return map(lambda t: rearrange(t, 'b g n d -> b (g n) d')[:, :n], (quad_out_v+lin_out_v, quad_out_u+lin_out_u)) class Gated_FSMN(nn.Module): def __init__( self, in_channels, out_channels, lorder, hidden_size ): super().__init__() self.to_u = FFConvM( dim_in = in_channels, dim_out = hidden_size, norm_klass = nn.LayerNorm, dropout = 0.1, ) self.to_v = FFConvM( dim_in = in_channels, dim_out = hidden_size, norm_klass = nn.LayerNorm, dropout = 0.1, ) self.fsmn = UniDeepFsmn(in_channels, out_channels, lorder, hidden_size) def forward( self, x, ): input = x x_u = self.to_u(x) x_v = self.to_v(x) x_u = self.fsmn(x_u) x = x_v * x_u + input return x class Gated_FSMN_dilated(nn.Module): def __init__( self, in_channels, out_channels, lorder, hidden_size ): super().__init__() self.to_u = FFConvM( dim_in = in_channels, dim_out = hidden_size, norm_klass = nn.LayerNorm, dropout = 0.1, ) self.to_v = FFConvM( dim_in = in_channels, dim_out = hidden_size, norm_klass = nn.LayerNorm, dropout = 0.1, ) self.fsmn = UniDeepFsmn_dilated(in_channels, out_channels, lorder, hidden_size) def forward( self, x, ): input = x x_u = self.to_u(x) x_v = self.to_v(x) x_u = self.fsmn(x_u) x = x_v * x_u + input return x class Gated_FSMN_Block(nn.Module): """Gated-FSMN block.""" def __init__(self, dim, inner_channels = 256, group_size = 256, norm_type = 'scalenorm', ): super(Gated_FSMN_Block, self).__init__() if norm_type == 'scalenorm': norm_klass = ScaleNorm elif norm_type == 'layernorm': norm_klass = nn.LayerNorm self.group_size = group_size # rotary_pos_emb = RotaryEmbedding(dim = min(32, query_key_dim)) self.conv1 = nn.Sequential( nn.Conv1d(dim, inner_channels, kernel_size=1), nn.PReLU(), ) self.norm1 = CLayerNorm(inner_channels) self.gated_fsmn = Gated_FSMN(inner_channels, inner_channels, lorder=20, hidden_size=inner_channels) self.norm2 = CLayerNorm(inner_channels) self.conv2 = nn.Conv1d(inner_channels, dim, kernel_size=1) def forward(self, input): conv1 = self.conv1(input.transpose(2,1)) norm1 = self.norm1(conv1) seq_out = self.gated_fsmn(norm1.transpose(2,1)) norm2 = self.norm2(seq_out.transpose(2,1)) conv2 = self.conv2(norm2) return conv2.transpose(2,1) + input class Gated_FSMN_Block_Dilated(nn.Module): """Gated-FSMN block with dilitations.""" def __init__(self, dim, inner_channels = 256, group_size = 256, norm_type = 'scalenorm', ): super(Gated_FSMN_Block_Dilated, self).__init__() if norm_type == 'scalenorm': norm_klass = ScaleNorm elif norm_type == 'layernorm': norm_klass = nn.LayerNorm self.group_size = group_size self.conv1 = nn.Sequential( nn.Conv1d(dim, inner_channels, kernel_size=1), nn.PReLU(), ) self.norm1 = CLayerNorm(inner_channels) #block dilated with gating self.gated_fsmn = Gated_FSMN_dilated(inner_channels, inner_channels, lorder=20, hidden_size=inner_channels) self.norm2 = CLayerNorm(inner_channels) self.conv2 = nn.Conv1d(inner_channels, dim, kernel_size=1) def forward(self, input): conv1 = self.conv1(input.transpose(2,1)) norm1 = self.norm1(conv1) seq_out = self.gated_fsmn(norm1.transpose(2,1)) norm2 = self.norm2(seq_out.transpose(2,1)) conv2 = self.conv2(norm2) return conv2.transpose(2,1) + input class MossformerBlock_GFSMN(nn.Module): def __init__( self, *, dim, depth, group_size = 256, #384, #128, #256, query_key_dim = 128, #256, #128, expansion_factor = 4., causal = False, attn_dropout = 0.1, norm_type = 'scalenorm', shift_tokens = True ): super().__init__() assert norm_type in ('scalenorm', 'layernorm'), 'norm_type must be one of scalenorm or layernorm' if norm_type == 'scalenorm': norm_klass = ScaleNorm elif norm_type == 'layernorm': norm_klass = nn.LayerNorm self.group_size = group_size rotary_pos_emb = RotaryEmbedding(dim = min(32, query_key_dim)) # max rotary embedding dimensions of 32, partial Rotary embeddings, from Wang et al - GPT-J self.fsmn = nn.ModuleList([Gated_FSMN_Block_Dilated(dim) for _ in range(depth)]) self.layers = nn.ModuleList([FLASH_ShareA_FFConvM(dim = dim, group_size = group_size, query_key_dim = query_key_dim, expansion_factor = expansion_factor, causal = causal, dropout = attn_dropout, rotary_pos_emb = rotary_pos_emb, norm_klass = norm_klass, shift_tokens = shift_tokens) for _ in range(depth)]) def _build_repeats(self, in_channels, out_channels, lorder, hidden_size, repeats=1): repeats = [ UniDeepFsmn(in_channels, out_channels, lorder, hidden_size) for i in range(repeats) ] return nn.Sequential(*repeats) def forward( self, x, *, mask = None ): ii = 0 for flash in self.layers: x = flash(x, mask = mask) x = self.fsmn[ii](x) ii = ii + 1 return x class MossformerBlock(nn.Module): def __init__( self, *, dim, depth, group_size = 256, #384, #128, #256, query_key_dim = 128, #256, #128, expansion_factor = 4., causal = False, attn_dropout = 0.1, norm_type = 'scalenorm', shift_tokens = True ): super().__init__() assert norm_type in ('scalenorm', 'layernorm'), 'norm_type must be one of scalenorm or layernorm' if norm_type == 'scalenorm': norm_klass = ScaleNorm elif norm_type == 'layernorm': norm_klass = nn.LayerNorm self.group_size = group_size rotary_pos_emb = RotaryEmbedding(dim = min(32, query_key_dim)) # max rotary embedding dimensions of 32, partial Rotary embeddings, from Wang et al - GPT-J self.layers = nn.ModuleList([FLASH_ShareA_FFConvM(dim = dim, group_size = group_size, query_key_dim = query_key_dim, expansion_factor = expansion_factor, causal = causal, dropout = attn_dropout, rotary_pos_emb = rotary_pos_emb, norm_klass = norm_klass, shift_tokens = shift_tokens) for _ in range(depth)]) def _build_repeats(self, in_channels, out_channels, lorder, hidden_size, repeats=1): repeats = [ UniDeepFsmn(in_channels, out_channels, lorder, hidden_size) for i in range(repeats) ] return nn.Sequential(*repeats) def forward( self, x, *, mask = None ): ii = 0 for flash in self.layers: x = flash(x, mask = mask) ii = ii + 1 return x