Spaces:
Running
on
Zero
Running
on
Zero
import torch | |
import sys, time, os, tqdm, torch, argparse, glob, subprocess, warnings, cv2, pickle, pdb, math, python_speech_features | |
import numpy as np | |
from scipy import signal | |
from shutil import rmtree | |
from scipy.io import wavfile | |
from scipy.interpolate import interp1d | |
from sklearn.metrics import accuracy_score, f1_score | |
import soundfile as sf | |
from scenedetect.video_manager import VideoManager | |
from scenedetect.scene_manager import SceneManager | |
from scenedetect.frame_timecode import FrameTimecode | |
from scenedetect.stats_manager import StatsManager | |
from scenedetect.detectors import ContentDetector | |
from models.av_mossformer2_tse.faceDetector.s3fd import S3FD | |
from .decode import decode_one_audio_AV_MossFormer2_TSE_16K | |
def process_tse(args, model, device, data_reader, output_wave_dir): | |
video_args = args_param() | |
video_args.model = model | |
video_args.device = device | |
video_args.sampling_rate = args.sampling_rate | |
args.device = device | |
assert args.sampling_rate == 16000 | |
with torch.no_grad(): | |
for videoPath in data_reader: # Loop over all video samples | |
savFolder = videoPath.split('/')[-1] | |
video_args.savePath = f'{output_wave_dir}/{savFolder[:-4]}/' | |
video_args.videoPath = videoPath | |
main(video_args, args) | |
def args_param(): | |
warnings.filterwarnings("ignore") | |
parser = argparse.ArgumentParser() | |
parser.add_argument('--nDataLoaderThread', type=int, default=10, help='Number of workers') | |
parser.add_argument('--facedetScale', type=float, default=0.25, help='Scale factor for face detection, the frames will be scale to 0.25 orig') | |
parser.add_argument('--minTrack', type=int, default=50, help='Number of min frames for each shot') | |
parser.add_argument('--numFailedDet', type=int, default=10, help='Number of missed detections allowed before tracking is stopped') | |
parser.add_argument('--minFaceSize', type=int, default=1, help='Minimum face size in pixels') | |
parser.add_argument('--cropScale', type=float, default=0.40, help='Scale bounding box') | |
parser.add_argument('--start', type=int, default=0, help='The start time of the video') | |
parser.add_argument('--duration', type=int, default=0, help='The duration of the video, when set as 0, will extract the whole video') | |
video_args = parser.parse_args() | |
return video_args | |
# Main function | |
def main(video_args, args): | |
# Initialization | |
video_args.pyaviPath = os.path.join(video_args.savePath, 'py_video') | |
video_args.pyframesPath = os.path.join(video_args.savePath, 'pyframes') | |
video_args.pyworkPath = os.path.join(video_args.savePath, 'pywork') | |
video_args.pycropPath = os.path.join(video_args.savePath, 'py_faceTracks') | |
if os.path.exists(video_args.savePath): | |
rmtree(video_args.savePath) | |
os.makedirs(video_args.pyaviPath, exist_ok = True) # The path for the input video, input audio, output video | |
os.makedirs(video_args.pyframesPath, exist_ok = True) # Save all the video frames | |
os.makedirs(video_args.pyworkPath, exist_ok = True) # Save the results in this process by the pckl method | |
os.makedirs(video_args.pycropPath, exist_ok = True) # Save the detected face clips (audio+video) in this process | |
# Extract video | |
video_args.videoFilePath = os.path.join(video_args.pyaviPath, 'video.avi') | |
# If duration did not set, extract the whole video, otherwise extract the video from 'video_args.start' to 'video_args.start + video_args.duration' | |
if video_args.duration == 0: | |
command = ("ffmpeg -y -i %s -qscale:v 2 -threads %d -async 1 -r 25 %s -loglevel panic" % \ | |
(video_args.videoPath, video_args.nDataLoaderThread, video_args.videoFilePath)) | |
else: | |
command = ("ffmpeg -y -i %s -qscale:v 2 -threads %d -ss %.3f -to %.3f -async 1 -r 25 %s -loglevel panic" % \ | |
(video_args.videoPath, video_args.nDataLoaderThread, video_args.start, video_args.start + video_args.duration, video_args.videoFilePath)) | |
subprocess.call(command, shell=True, stdout=None) | |
sys.stderr.write(time.strftime("%Y-%m-%d %H:%M:%S") + " Extract the video and save in %s \r\n" %(video_args.videoFilePath)) | |
# Extract audio | |
video_args.audioFilePath = os.path.join(video_args.pyaviPath, 'audio.wav') | |
command = ("ffmpeg -y -i %s -qscale:a 0 -ac 1 -vn -threads %d -ar 16000 %s -loglevel panic" % \ | |
(video_args.videoFilePath, video_args.nDataLoaderThread, video_args.audioFilePath)) | |
subprocess.call(command, shell=True, stdout=None) | |
sys.stderr.write(time.strftime("%Y-%m-%d %H:%M:%S") + " Extract the audio and save in %s \r\n" %(video_args.audioFilePath)) | |
# Extract the video frames | |
command = ("ffmpeg -y -i %s -qscale:v 2 -threads %d -f image2 %s -loglevel panic" % \ | |
(video_args.videoFilePath, video_args.nDataLoaderThread, os.path.join(video_args.pyframesPath, '%06d.jpg'))) | |
subprocess.call(command, shell=True, stdout=None) | |
sys.stderr.write(time.strftime("%Y-%m-%d %H:%M:%S") + " Extract the frames and save in %s \r\n" %(video_args.pyframesPath)) | |
# Scene detection for the video frames | |
scene = scene_detect(video_args) | |
sys.stderr.write(time.strftime("%Y-%m-%d %H:%M:%S") + " Scene detection and save in %s \r\n" %(video_args.pyworkPath)) | |
# Face detection for the video frames | |
faces = inference_video(video_args) | |
sys.stderr.write(time.strftime("%Y-%m-%d %H:%M:%S") + " Face detection and save in %s \r\n" %(video_args.pyworkPath)) | |
# Face tracking | |
allTracks, vidTracks = [], [] | |
for shot in scene: | |
if shot[1].frame_num - shot[0].frame_num >= video_args.minTrack: # Discard the shot frames less than minTrack frames | |
allTracks.extend(track_shot(video_args, faces[shot[0].frame_num:shot[1].frame_num])) # 'frames' to present this tracks' timestep, 'bbox' presents the location of the faces | |
sys.stderr.write(time.strftime("%Y-%m-%d %H:%M:%S") + " Face track and detected %d tracks \r\n" %len(allTracks)) | |
# Face clips cropping | |
for ii, track in tqdm.tqdm(enumerate(allTracks), total = len(allTracks)): | |
vidTracks.append(crop_video(video_args, track, os.path.join(video_args.pycropPath, '%05d'%ii))) | |
savePath = os.path.join(video_args.pyworkPath, 'tracks.pckl') | |
with open(savePath, 'wb') as fil: | |
pickle.dump(vidTracks, fil) | |
sys.stderr.write(time.strftime("%Y-%m-%d %H:%M:%S") + " Face Crop and saved in %s tracks \r\n" %video_args.pycropPath) | |
fil = open(savePath, 'rb') | |
vidTracks = pickle.load(fil) | |
fil.close() | |
# AVSE | |
files = glob.glob("%s/*.avi"%video_args.pycropPath) | |
files.sort() | |
est_sources = evaluate_network(files, video_args, args) | |
visualization(vidTracks, est_sources, video_args) | |
# combine files in pycrop | |
for idx, file in enumerate(files): | |
print(file) | |
command = f"ffmpeg -i {file} {file[:-9]}orig_{idx}.mp4 ;" | |
command += f"rm {file} ;" | |
command += f"rm {file.replace('.avi', '.wav')} ;" | |
command += f"ffmpeg -i {file[:-9]}orig_{idx}.mp4 -i {file[:-9]}est_{idx}.wav -c:v copy -map 0:v:0 -map 1:a:0 -shortest {file[:-9]}est_{idx}.mp4 ;" | |
# command += f"rm {file[:-9]}est_{idx}.wav ;" | |
output = subprocess.call(command, shell=True, stdout=None) | |
rmtree(video_args.pyworkPath) | |
rmtree(video_args.pyframesPath) | |
def scene_detect(video_args): | |
# CPU: Scene detection, output is the list of each shot's time duration | |
videoManager = VideoManager([video_args.videoFilePath]) | |
statsManager = StatsManager() | |
sceneManager = SceneManager(statsManager) | |
sceneManager.add_detector(ContentDetector()) | |
baseTimecode = videoManager.get_base_timecode() | |
videoManager.set_downscale_factor() | |
videoManager.start() | |
sceneManager.detect_scenes(frame_source = videoManager) | |
sceneList = sceneManager.get_scene_list(baseTimecode) | |
savePath = os.path.join(video_args.pyworkPath, 'scene.pckl') | |
if sceneList == []: | |
sceneList = [(videoManager.get_base_timecode(),videoManager.get_current_timecode())] | |
with open(savePath, 'wb') as fil: | |
pickle.dump(sceneList, fil) | |
sys.stderr.write('%s - scenes detected %d\n'%(video_args.videoFilePath, len(sceneList))) | |
return sceneList | |
def inference_video(video_args): | |
# GPU: Face detection, output is the list contains the face location and score in this frame | |
DET = S3FD(device=video_args.device) | |
flist = glob.glob(os.path.join(video_args.pyframesPath, '*.jpg')) | |
flist.sort() | |
dets = [] | |
for fidx, fname in enumerate(flist): | |
image = cv2.imread(fname) | |
imageNumpy = cv2.cvtColor(image, cv2.COLOR_BGR2RGB) | |
bboxes = DET.detect_faces(imageNumpy, conf_th=0.9, scales=[video_args.facedetScale]) | |
dets.append([]) | |
for bbox in bboxes: | |
dets[-1].append({'frame':fidx, 'bbox':(bbox[:-1]).tolist(), 'conf':bbox[-1]}) # dets has the frames info, bbox info, conf info | |
sys.stderr.write('%s-%05d; %d dets\r' % (video_args.videoFilePath, fidx, len(dets[-1]))) | |
savePath = os.path.join(video_args.pyworkPath,'faces.pckl') | |
with open(savePath, 'wb') as fil: | |
pickle.dump(dets, fil) | |
return dets | |
def bb_intersection_over_union(boxA, boxB, evalCol = False): | |
# CPU: IOU Function to calculate overlap between two image | |
xA = max(boxA[0], boxB[0]) | |
yA = max(boxA[1], boxB[1]) | |
xB = min(boxA[2], boxB[2]) | |
yB = min(boxA[3], boxB[3]) | |
interArea = max(0, xB - xA) * max(0, yB - yA) | |
boxAArea = (boxA[2] - boxA[0]) * (boxA[3] - boxA[1]) | |
boxBArea = (boxB[2] - boxB[0]) * (boxB[3] - boxB[1]) | |
if evalCol == True: | |
iou = interArea / float(boxAArea) | |
else: | |
iou = interArea / float(boxAArea + boxBArea - interArea) | |
return iou | |
def track_shot(video_args, sceneFaces): | |
# CPU: Face tracking | |
iouThres = 0.5 # Minimum IOU between consecutive face detections | |
tracks = [] | |
while True: | |
track = [] | |
for frameFaces in sceneFaces: | |
for face in frameFaces: | |
if track == []: | |
track.append(face) | |
frameFaces.remove(face) | |
elif face['frame'] - track[-1]['frame'] <= video_args.numFailedDet: | |
iou = bb_intersection_over_union(face['bbox'], track[-1]['bbox']) | |
if iou > iouThres: | |
track.append(face) | |
frameFaces.remove(face) | |
continue | |
else: | |
break | |
if track == []: | |
break | |
elif len(track) > video_args.minTrack: | |
frameNum = np.array([ f['frame'] for f in track ]) | |
bboxes = np.array([np.array(f['bbox']) for f in track]) | |
frameI = np.arange(frameNum[0],frameNum[-1]+1) | |
bboxesI = [] | |
for ij in range(0,4): | |
interpfn = interp1d(frameNum, bboxes[:,ij]) | |
bboxesI.append(interpfn(frameI)) | |
bboxesI = np.stack(bboxesI, axis=1) | |
if max(np.mean(bboxesI[:,2]-bboxesI[:,0]), np.mean(bboxesI[:,3]-bboxesI[:,1])) > video_args.minFaceSize: | |
tracks.append({'frame':frameI,'bbox':bboxesI}) | |
return tracks | |
def crop_video(video_args, track, cropFile): | |
# CPU: crop the face clips | |
flist = glob.glob(os.path.join(video_args.pyframesPath, '*.jpg')) # Read the frames | |
flist.sort() | |
vOut = cv2.VideoWriter(cropFile + 't.avi', cv2.VideoWriter_fourcc(*'XVID'), 25, (224,224))# Write video | |
dets = {'x':[], 'y':[], 's':[]} | |
for det in track['bbox']: # Read the tracks | |
dets['s'].append(max((det[3]-det[1]), (det[2]-det[0]))/2) | |
dets['y'].append((det[1]+det[3])/2) # crop center x | |
dets['x'].append((det[0]+det[2])/2) # crop center y | |
dets['s'] = signal.medfilt(dets['s'], kernel_size=13) # Smooth detections | |
dets['x'] = signal.medfilt(dets['x'], kernel_size=13) | |
dets['y'] = signal.medfilt(dets['y'], kernel_size=13) | |
for fidx, frame in enumerate(track['frame']): | |
cs = video_args.cropScale | |
bs = dets['s'][fidx] # Detection box size | |
bsi = int(bs * (1 + 2 * cs)) # Pad videos by this amount | |
image = cv2.imread(flist[frame]) | |
frame = np.pad(image, ((bsi,bsi), (bsi,bsi), (0, 0)), 'constant', constant_values=(110, 110)) | |
my = dets['y'][fidx] + bsi # BBox center Y | |
mx = dets['x'][fidx] + bsi # BBox center X | |
face = frame[int(my-bs):int(my+bs*(1+2*cs)),int(mx-bs*(1+cs)):int(mx+bs*(1+cs))] | |
vOut.write(cv2.resize(face, (224, 224))) | |
audioTmp = cropFile + '.wav' | |
audioStart = (track['frame'][0]) / 25 | |
audioEnd = (track['frame'][-1]+1) / 25 | |
vOut.release() | |
command = ("ffmpeg -y -i %s -async 1 -ac 1 -vn -acodec pcm_s16le -ar 16000 -threads %d -ss %.3f -to %.3f %s -loglevel panic" % \ | |
(video_args.audioFilePath, video_args.nDataLoaderThread, audioStart, audioEnd, audioTmp)) | |
output = subprocess.call(command, shell=True, stdout=None) # Crop audio file | |
_, audio = wavfile.read(audioTmp) | |
command = ("ffmpeg -y -i %st.avi -i %s -threads %d -c:v copy -c:a copy %s.avi -loglevel panic" % \ | |
(cropFile, audioTmp, video_args.nDataLoaderThread, cropFile)) # Combine audio and video file | |
output = subprocess.call(command, shell=True, stdout=None) | |
os.remove(cropFile + 't.avi') | |
return {'track':track, 'proc_track':dets} | |
def evaluate_network(files, video_args, args): | |
est_sources = [] | |
for file in tqdm.tqdm(files, total = len(files)): | |
fileName = os.path.splitext(file.split('/')[-1])[0] # Load audio and video | |
audio, _ = sf.read(os.path.join(video_args.pycropPath, fileName + '.wav'), dtype='float32') | |
video = cv2.VideoCapture(os.path.join(video_args.pycropPath, fileName + '.avi')) | |
videoFeature = [] | |
while video.isOpened(): | |
ret, frames = video.read() | |
if ret == True: | |
face = cv2.cvtColor(frames, cv2.COLOR_BGR2GRAY) | |
face = cv2.resize(face, (224,224)) | |
face = face[int(112-(112/2)):int(112+(112/2)), int(112-(112/2)):int(112+(112/2))] | |
videoFeature.append(face) | |
else: | |
break | |
video.release() | |
visual = np.array(videoFeature)/255.0 | |
visual = (visual - 0.4161)/0.1688 | |
length = int(audio.shape[0]/16000*25) | |
if visual.shape[0] < length: | |
visual = np.pad(visual, ((0,int(length - visual.shape[0])),(0,0),(0,0)), mode = 'edge') | |
audio = np.expand_dims(audio, axis=0) | |
visual = np.expand_dims(visual, axis=0) | |
inputs = (audio, visual) | |
est_source = decode_one_audio_AV_MossFormer2_TSE_16K(video_args.model, inputs, args) | |
est_sources.append(est_source) | |
return est_sources | |
def visualization(tracks, est_sources, video_args): | |
# CPU: visulize the result for video format | |
flist = glob.glob(os.path.join(video_args.pyframesPath, '*.jpg')) | |
flist.sort() | |
for idx, audio in enumerate(est_sources): | |
max_value = np.max(np.abs(audio)) | |
if max_value >1: | |
audio /= max_value | |
sf.write(video_args.pycropPath +'/est_%s.wav' %idx, audio, 16000) | |
for tidx, track in enumerate(tracks): | |
faces = [[] for i in range(len(flist))] | |
for fidx, frame in enumerate(track['track']['frame'].tolist()): | |
faces[frame].append({'track':tidx, 's':track['proc_track']['s'][fidx], 'x':track['proc_track']['x'][fidx], 'y':track['proc_track']['y'][fidx]}) | |
firstImage = cv2.imread(flist[0]) | |
fw = firstImage.shape[1] | |
fh = firstImage.shape[0] | |
vOut = cv2.VideoWriter(os.path.join(video_args.pyaviPath, 'video_only.avi'), cv2.VideoWriter_fourcc(*'XVID'), 25, (fw,fh)) | |
for fidx, fname in tqdm.tqdm(enumerate(flist), total = len(flist)): | |
image = cv2.imread(fname) | |
for face in faces[fidx]: | |
cv2.rectangle(image, (int(face['x']-face['s']), int(face['y']-face['s'])), (int(face['x']+face['s']), int(face['y']+face['s'])),(0,255,0),10) | |
vOut.write(image) | |
vOut.release() | |
command = ("ffmpeg -y -i %s -i %s -threads %d -c:v copy -c:a copy %s -loglevel panic" % \ | |
(os.path.join(video_args.pyaviPath, 'video_only.avi'), (video_args.pycropPath +'/est_%s.wav' %tidx), \ | |
video_args.nDataLoaderThread, os.path.join(video_args.pyaviPath,'video_out_%s.avi'%tidx))) | |
output = subprocess.call(command, shell=True, stdout=None) | |
command = "ffmpeg -i %s %s ;" % ( | |
os.path.join(video_args.pyaviPath, 'video_out_%s.avi' % tidx), | |
os.path.join(video_args.pyaviPath, 'video_est_%s.mp4' % tidx) | |
) | |
command += f"rm {os.path.join(video_args.pyaviPath, 'video_out_%s.avi' % tidx)}" | |
output = subprocess.call(command, shell=True, stdout=None) | |
command = "ffmpeg -i %s %s ;" % ( | |
os.path.join(video_args.pyaviPath, 'video.avi'), | |
os.path.join(video_args.pyaviPath, 'video_orig.mp4') | |
) | |
command += f"rm {os.path.join(video_args.pyaviPath, 'video_only.avi')} ;" | |
command += f"rm {os.path.join(video_args.pyaviPath, 'video.avi')} ;" | |
command += f"rm {os.path.join(video_args.pyaviPath, 'audio.wav')} ;" | |
output = subprocess.call(command, shell=True, stdout=None) | |