ClearVoice / utils /video_process.py
alibabasglab's picture
Upload 161 files
8e8cd3e verified
raw
history blame
16.3 kB
import torch
import sys, time, os, tqdm, torch, argparse, glob, subprocess, warnings, cv2, pickle, pdb, math, python_speech_features
import numpy as np
from scipy import signal
from shutil import rmtree
from scipy.io import wavfile
from scipy.interpolate import interp1d
from sklearn.metrics import accuracy_score, f1_score
import soundfile as sf
from scenedetect.video_manager import VideoManager
from scenedetect.scene_manager import SceneManager
from scenedetect.frame_timecode import FrameTimecode
from scenedetect.stats_manager import StatsManager
from scenedetect.detectors import ContentDetector
from models.av_mossformer2_tse.faceDetector.s3fd import S3FD
from .decode import decode_one_audio_AV_MossFormer2_TSE_16K
def process_tse(args, model, device, data_reader, output_wave_dir):
video_args = args_param()
video_args.model = model
video_args.device = device
video_args.sampling_rate = args.sampling_rate
args.device = device
assert args.sampling_rate == 16000
with torch.no_grad():
for videoPath in data_reader: # Loop over all video samples
savFolder = videoPath.split('/')[-1]
video_args.savePath = f'{output_wave_dir}/{savFolder[:-4]}/'
video_args.videoPath = videoPath
main(video_args, args)
def args_param():
warnings.filterwarnings("ignore")
parser = argparse.ArgumentParser()
parser.add_argument('--nDataLoaderThread', type=int, default=10, help='Number of workers')
parser.add_argument('--facedetScale', type=float, default=0.25, help='Scale factor for face detection, the frames will be scale to 0.25 orig')
parser.add_argument('--minTrack', type=int, default=50, help='Number of min frames for each shot')
parser.add_argument('--numFailedDet', type=int, default=10, help='Number of missed detections allowed before tracking is stopped')
parser.add_argument('--minFaceSize', type=int, default=1, help='Minimum face size in pixels')
parser.add_argument('--cropScale', type=float, default=0.40, help='Scale bounding box')
parser.add_argument('--start', type=int, default=0, help='The start time of the video')
parser.add_argument('--duration', type=int, default=0, help='The duration of the video, when set as 0, will extract the whole video')
video_args = parser.parse_args()
return video_args
# Main function
def main(video_args, args):
# Initialization
video_args.pyaviPath = os.path.join(video_args.savePath, 'py_video')
video_args.pyframesPath = os.path.join(video_args.savePath, 'pyframes')
video_args.pyworkPath = os.path.join(video_args.savePath, 'pywork')
video_args.pycropPath = os.path.join(video_args.savePath, 'py_faceTracks')
if os.path.exists(video_args.savePath):
rmtree(video_args.savePath)
os.makedirs(video_args.pyaviPath, exist_ok = True) # The path for the input video, input audio, output video
os.makedirs(video_args.pyframesPath, exist_ok = True) # Save all the video frames
os.makedirs(video_args.pyworkPath, exist_ok = True) # Save the results in this process by the pckl method
os.makedirs(video_args.pycropPath, exist_ok = True) # Save the detected face clips (audio+video) in this process
# Extract video
video_args.videoFilePath = os.path.join(video_args.pyaviPath, 'video.avi')
# If duration did not set, extract the whole video, otherwise extract the video from 'video_args.start' to 'video_args.start + video_args.duration'
if video_args.duration == 0:
command = ("ffmpeg -y -i %s -qscale:v 2 -threads %d -async 1 -r 25 %s -loglevel panic" % \
(video_args.videoPath, video_args.nDataLoaderThread, video_args.videoFilePath))
else:
command = ("ffmpeg -y -i %s -qscale:v 2 -threads %d -ss %.3f -to %.3f -async 1 -r 25 %s -loglevel panic" % \
(video_args.videoPath, video_args.nDataLoaderThread, video_args.start, video_args.start + video_args.duration, video_args.videoFilePath))
subprocess.call(command, shell=True, stdout=None)
sys.stderr.write(time.strftime("%Y-%m-%d %H:%M:%S") + " Extract the video and save in %s \r\n" %(video_args.videoFilePath))
# Extract audio
video_args.audioFilePath = os.path.join(video_args.pyaviPath, 'audio.wav')
command = ("ffmpeg -y -i %s -qscale:a 0 -ac 1 -vn -threads %d -ar 16000 %s -loglevel panic" % \
(video_args.videoFilePath, video_args.nDataLoaderThread, video_args.audioFilePath))
subprocess.call(command, shell=True, stdout=None)
sys.stderr.write(time.strftime("%Y-%m-%d %H:%M:%S") + " Extract the audio and save in %s \r\n" %(video_args.audioFilePath))
# Extract the video frames
command = ("ffmpeg -y -i %s -qscale:v 2 -threads %d -f image2 %s -loglevel panic" % \
(video_args.videoFilePath, video_args.nDataLoaderThread, os.path.join(video_args.pyframesPath, '%06d.jpg')))
subprocess.call(command, shell=True, stdout=None)
sys.stderr.write(time.strftime("%Y-%m-%d %H:%M:%S") + " Extract the frames and save in %s \r\n" %(video_args.pyframesPath))
# Scene detection for the video frames
scene = scene_detect(video_args)
sys.stderr.write(time.strftime("%Y-%m-%d %H:%M:%S") + " Scene detection and save in %s \r\n" %(video_args.pyworkPath))
# Face detection for the video frames
faces = inference_video(video_args)
sys.stderr.write(time.strftime("%Y-%m-%d %H:%M:%S") + " Face detection and save in %s \r\n" %(video_args.pyworkPath))
# Face tracking
allTracks, vidTracks = [], []
for shot in scene:
if shot[1].frame_num - shot[0].frame_num >= video_args.minTrack: # Discard the shot frames less than minTrack frames
allTracks.extend(track_shot(video_args, faces[shot[0].frame_num:shot[1].frame_num])) # 'frames' to present this tracks' timestep, 'bbox' presents the location of the faces
sys.stderr.write(time.strftime("%Y-%m-%d %H:%M:%S") + " Face track and detected %d tracks \r\n" %len(allTracks))
# Face clips cropping
for ii, track in tqdm.tqdm(enumerate(allTracks), total = len(allTracks)):
vidTracks.append(crop_video(video_args, track, os.path.join(video_args.pycropPath, '%05d'%ii)))
savePath = os.path.join(video_args.pyworkPath, 'tracks.pckl')
with open(savePath, 'wb') as fil:
pickle.dump(vidTracks, fil)
sys.stderr.write(time.strftime("%Y-%m-%d %H:%M:%S") + " Face Crop and saved in %s tracks \r\n" %video_args.pycropPath)
fil = open(savePath, 'rb')
vidTracks = pickle.load(fil)
fil.close()
# AVSE
files = glob.glob("%s/*.avi"%video_args.pycropPath)
files.sort()
est_sources = evaluate_network(files, video_args, args)
visualization(vidTracks, est_sources, video_args)
# combine files in pycrop
for idx, file in enumerate(files):
print(file)
command = f"ffmpeg -i {file} {file[:-9]}orig_{idx}.mp4 ;"
command += f"rm {file} ;"
command += f"rm {file.replace('.avi', '.wav')} ;"
command += f"ffmpeg -i {file[:-9]}orig_{idx}.mp4 -i {file[:-9]}est_{idx}.wav -c:v copy -map 0:v:0 -map 1:a:0 -shortest {file[:-9]}est_{idx}.mp4 ;"
# command += f"rm {file[:-9]}est_{idx}.wav ;"
output = subprocess.call(command, shell=True, stdout=None)
rmtree(video_args.pyworkPath)
rmtree(video_args.pyframesPath)
def scene_detect(video_args):
# CPU: Scene detection, output is the list of each shot's time duration
videoManager = VideoManager([video_args.videoFilePath])
statsManager = StatsManager()
sceneManager = SceneManager(statsManager)
sceneManager.add_detector(ContentDetector())
baseTimecode = videoManager.get_base_timecode()
videoManager.set_downscale_factor()
videoManager.start()
sceneManager.detect_scenes(frame_source = videoManager)
sceneList = sceneManager.get_scene_list(baseTimecode)
savePath = os.path.join(video_args.pyworkPath, 'scene.pckl')
if sceneList == []:
sceneList = [(videoManager.get_base_timecode(),videoManager.get_current_timecode())]
with open(savePath, 'wb') as fil:
pickle.dump(sceneList, fil)
sys.stderr.write('%s - scenes detected %d\n'%(video_args.videoFilePath, len(sceneList)))
return sceneList
def inference_video(video_args):
# GPU: Face detection, output is the list contains the face location and score in this frame
DET = S3FD(device=video_args.device)
flist = glob.glob(os.path.join(video_args.pyframesPath, '*.jpg'))
flist.sort()
dets = []
for fidx, fname in enumerate(flist):
image = cv2.imread(fname)
imageNumpy = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
bboxes = DET.detect_faces(imageNumpy, conf_th=0.9, scales=[video_args.facedetScale])
dets.append([])
for bbox in bboxes:
dets[-1].append({'frame':fidx, 'bbox':(bbox[:-1]).tolist(), 'conf':bbox[-1]}) # dets has the frames info, bbox info, conf info
sys.stderr.write('%s-%05d; %d dets\r' % (video_args.videoFilePath, fidx, len(dets[-1])))
savePath = os.path.join(video_args.pyworkPath,'faces.pckl')
with open(savePath, 'wb') as fil:
pickle.dump(dets, fil)
return dets
def bb_intersection_over_union(boxA, boxB, evalCol = False):
# CPU: IOU Function to calculate overlap between two image
xA = max(boxA[0], boxB[0])
yA = max(boxA[1], boxB[1])
xB = min(boxA[2], boxB[2])
yB = min(boxA[3], boxB[3])
interArea = max(0, xB - xA) * max(0, yB - yA)
boxAArea = (boxA[2] - boxA[0]) * (boxA[3] - boxA[1])
boxBArea = (boxB[2] - boxB[0]) * (boxB[3] - boxB[1])
if evalCol == True:
iou = interArea / float(boxAArea)
else:
iou = interArea / float(boxAArea + boxBArea - interArea)
return iou
def track_shot(video_args, sceneFaces):
# CPU: Face tracking
iouThres = 0.5 # Minimum IOU between consecutive face detections
tracks = []
while True:
track = []
for frameFaces in sceneFaces:
for face in frameFaces:
if track == []:
track.append(face)
frameFaces.remove(face)
elif face['frame'] - track[-1]['frame'] <= video_args.numFailedDet:
iou = bb_intersection_over_union(face['bbox'], track[-1]['bbox'])
if iou > iouThres:
track.append(face)
frameFaces.remove(face)
continue
else:
break
if track == []:
break
elif len(track) > video_args.minTrack:
frameNum = np.array([ f['frame'] for f in track ])
bboxes = np.array([np.array(f['bbox']) for f in track])
frameI = np.arange(frameNum[0],frameNum[-1]+1)
bboxesI = []
for ij in range(0,4):
interpfn = interp1d(frameNum, bboxes[:,ij])
bboxesI.append(interpfn(frameI))
bboxesI = np.stack(bboxesI, axis=1)
if max(np.mean(bboxesI[:,2]-bboxesI[:,0]), np.mean(bboxesI[:,3]-bboxesI[:,1])) > video_args.minFaceSize:
tracks.append({'frame':frameI,'bbox':bboxesI})
return tracks
def crop_video(video_args, track, cropFile):
# CPU: crop the face clips
flist = glob.glob(os.path.join(video_args.pyframesPath, '*.jpg')) # Read the frames
flist.sort()
vOut = cv2.VideoWriter(cropFile + 't.avi', cv2.VideoWriter_fourcc(*'XVID'), 25, (224,224))# Write video
dets = {'x':[], 'y':[], 's':[]}
for det in track['bbox']: # Read the tracks
dets['s'].append(max((det[3]-det[1]), (det[2]-det[0]))/2)
dets['y'].append((det[1]+det[3])/2) # crop center x
dets['x'].append((det[0]+det[2])/2) # crop center y
dets['s'] = signal.medfilt(dets['s'], kernel_size=13) # Smooth detections
dets['x'] = signal.medfilt(dets['x'], kernel_size=13)
dets['y'] = signal.medfilt(dets['y'], kernel_size=13)
for fidx, frame in enumerate(track['frame']):
cs = video_args.cropScale
bs = dets['s'][fidx] # Detection box size
bsi = int(bs * (1 + 2 * cs)) # Pad videos by this amount
image = cv2.imread(flist[frame])
frame = np.pad(image, ((bsi,bsi), (bsi,bsi), (0, 0)), 'constant', constant_values=(110, 110))
my = dets['y'][fidx] + bsi # BBox center Y
mx = dets['x'][fidx] + bsi # BBox center X
face = frame[int(my-bs):int(my+bs*(1+2*cs)),int(mx-bs*(1+cs)):int(mx+bs*(1+cs))]
vOut.write(cv2.resize(face, (224, 224)))
audioTmp = cropFile + '.wav'
audioStart = (track['frame'][0]) / 25
audioEnd = (track['frame'][-1]+1) / 25
vOut.release()
command = ("ffmpeg -y -i %s -async 1 -ac 1 -vn -acodec pcm_s16le -ar 16000 -threads %d -ss %.3f -to %.3f %s -loglevel panic" % \
(video_args.audioFilePath, video_args.nDataLoaderThread, audioStart, audioEnd, audioTmp))
output = subprocess.call(command, shell=True, stdout=None) # Crop audio file
_, audio = wavfile.read(audioTmp)
command = ("ffmpeg -y -i %st.avi -i %s -threads %d -c:v copy -c:a copy %s.avi -loglevel panic" % \
(cropFile, audioTmp, video_args.nDataLoaderThread, cropFile)) # Combine audio and video file
output = subprocess.call(command, shell=True, stdout=None)
os.remove(cropFile + 't.avi')
return {'track':track, 'proc_track':dets}
def evaluate_network(files, video_args, args):
est_sources = []
for file in tqdm.tqdm(files, total = len(files)):
fileName = os.path.splitext(file.split('/')[-1])[0] # Load audio and video
audio, _ = sf.read(os.path.join(video_args.pycropPath, fileName + '.wav'), dtype='float32')
video = cv2.VideoCapture(os.path.join(video_args.pycropPath, fileName + '.avi'))
videoFeature = []
while video.isOpened():
ret, frames = video.read()
if ret == True:
face = cv2.cvtColor(frames, cv2.COLOR_BGR2GRAY)
face = cv2.resize(face, (224,224))
face = face[int(112-(112/2)):int(112+(112/2)), int(112-(112/2)):int(112+(112/2))]
videoFeature.append(face)
else:
break
video.release()
visual = np.array(videoFeature)/255.0
visual = (visual - 0.4161)/0.1688
length = int(audio.shape[0]/16000*25)
if visual.shape[0] < length:
visual = np.pad(visual, ((0,int(length - visual.shape[0])),(0,0),(0,0)), mode = 'edge')
audio = np.expand_dims(audio, axis=0)
visual = np.expand_dims(visual, axis=0)
inputs = (audio, visual)
est_source = decode_one_audio_AV_MossFormer2_TSE_16K(video_args.model, inputs, args)
est_sources.append(est_source)
return est_sources
def visualization(tracks, est_sources, video_args):
# CPU: visulize the result for video format
flist = glob.glob(os.path.join(video_args.pyframesPath, '*.jpg'))
flist.sort()
for idx, audio in enumerate(est_sources):
max_value = np.max(np.abs(audio))
if max_value >1:
audio /= max_value
sf.write(video_args.pycropPath +'/est_%s.wav' %idx, audio, 16000)
for tidx, track in enumerate(tracks):
faces = [[] for i in range(len(flist))]
for fidx, frame in enumerate(track['track']['frame'].tolist()):
faces[frame].append({'track':tidx, 's':track['proc_track']['s'][fidx], 'x':track['proc_track']['x'][fidx], 'y':track['proc_track']['y'][fidx]})
firstImage = cv2.imread(flist[0])
fw = firstImage.shape[1]
fh = firstImage.shape[0]
vOut = cv2.VideoWriter(os.path.join(video_args.pyaviPath, 'video_only.avi'), cv2.VideoWriter_fourcc(*'XVID'), 25, (fw,fh))
for fidx, fname in tqdm.tqdm(enumerate(flist), total = len(flist)):
image = cv2.imread(fname)
for face in faces[fidx]:
cv2.rectangle(image, (int(face['x']-face['s']), int(face['y']-face['s'])), (int(face['x']+face['s']), int(face['y']+face['s'])),(0,255,0),10)
vOut.write(image)
vOut.release()
command = ("ffmpeg -y -i %s -i %s -threads %d -c:v copy -c:a copy %s -loglevel panic" % \
(os.path.join(video_args.pyaviPath, 'video_only.avi'), (video_args.pycropPath +'/est_%s.wav' %tidx), \
video_args.nDataLoaderThread, os.path.join(video_args.pyaviPath,'video_out_%s.avi'%tidx)))
output = subprocess.call(command, shell=True, stdout=None)
command = "ffmpeg -i %s %s ;" % (
os.path.join(video_args.pyaviPath, 'video_out_%s.avi' % tidx),
os.path.join(video_args.pyaviPath, 'video_est_%s.mp4' % tidx)
)
command += f"rm {os.path.join(video_args.pyaviPath, 'video_out_%s.avi' % tidx)}"
output = subprocess.call(command, shell=True, stdout=None)
command = "ffmpeg -i %s %s ;" % (
os.path.join(video_args.pyaviPath, 'video.avi'),
os.path.join(video_args.pyaviPath, 'video_orig.mp4')
)
command += f"rm {os.path.join(video_args.pyaviPath, 'video_only.avi')} ;"
command += f"rm {os.path.join(video_args.pyaviPath, 'video.avi')} ;"
command += f"rm {os.path.join(video_args.pyaviPath, 'audio.wav')} ;"
output = subprocess.call(command, shell=True, stdout=None)