Spaces:
Running
on
Zero
Running
on
Zero
import torch | |
import torch.nn as nn | |
import torch.nn.functional as F | |
class Visual_encoder(nn.Module): | |
def __init__(self, args): | |
super(Visual_encoder, self).__init__() | |
self.args = args | |
# visual frontend | |
self.v_frontend = VisualFrontend(args) | |
self.v_ds = nn.Conv1d(512, 256, 1, bias=False) | |
# visual adaptor | |
stacks = [] | |
for x in range(5): | |
stacks +=[VisualConv1D(args, V=256, H=512)] | |
self.visual_conv = nn.Sequential(*stacks) | |
def forward(self, visual): | |
visual = self.v_frontend(visual.unsqueeze(1)) | |
visual = self.v_ds(visual) | |
visual = self.visual_conv(visual) | |
return visual | |
class ResNetLayer(nn.Module): | |
""" | |
A ResNet layer used to build the ResNet network. | |
Architecture: | |
--> conv-bn-relu -> conv -> + -> bn-relu -> conv-bn-relu -> conv -> + -> bn-relu --> | |
| | | | | |
-----> downsample ------> -------------------------------------> | |
""" | |
def __init__(self, inplanes, outplanes, stride): | |
super(ResNetLayer, self).__init__() | |
self.conv1a = nn.Conv2d(inplanes, outplanes, kernel_size=3, stride=stride, padding=1, bias=False) | |
self.bn1a = nn.BatchNorm2d(outplanes, momentum=0.01, eps=0.001) | |
self.conv2a = nn.Conv2d(outplanes, outplanes, kernel_size=3, stride=1, padding=1, bias=False) | |
self.stride = stride | |
self.downsample = nn.Conv2d(inplanes, outplanes, kernel_size=(1,1), stride=stride, bias=False) | |
self.outbna = nn.BatchNorm2d(outplanes, momentum=0.01, eps=0.001) | |
self.conv1b = nn.Conv2d(outplanes, outplanes, kernel_size=3, stride=1, padding=1, bias=False) | |
self.bn1b = nn.BatchNorm2d(outplanes, momentum=0.01, eps=0.001) | |
self.conv2b = nn.Conv2d(outplanes, outplanes, kernel_size=3, stride=1, padding=1, bias=False) | |
self.outbnb = nn.BatchNorm2d(outplanes, momentum=0.01, eps=0.001) | |
return | |
def forward(self, inputBatch): | |
batch = F.relu(self.bn1a(self.conv1a(inputBatch))) | |
batch = self.conv2a(batch) | |
if self.stride == 1: | |
residualBatch = inputBatch | |
else: | |
residualBatch = self.downsample(inputBatch) | |
batch = batch + residualBatch | |
intermediateBatch = batch | |
batch = F.relu(self.outbna(batch)) | |
batch = F.relu(self.bn1b(self.conv1b(batch))) | |
batch = self.conv2b(batch) | |
residualBatch = intermediateBatch | |
batch = batch + residualBatch | |
outputBatch = F.relu(self.outbnb(batch)) | |
return outputBatch | |
class ResNet(nn.Module): | |
""" | |
An 18-layer ResNet architecture. | |
""" | |
def __init__(self): | |
super(ResNet, self).__init__() | |
self.layer1 = ResNetLayer(64, 64, stride=1) | |
self.layer2 = ResNetLayer(64, 128, stride=2) | |
self.layer3 = ResNetLayer(128, 256, stride=2) | |
self.layer4 = ResNetLayer(256, 512, stride=2) | |
self.avgpool = nn.AvgPool2d(kernel_size=(4,4), stride=(1,1)) | |
return | |
def forward(self, inputBatch): | |
batch = self.layer1(inputBatch) | |
batch = self.layer2(batch) | |
batch = self.layer3(batch) | |
batch = self.layer4(batch) | |
outputBatch = self.avgpool(batch) | |
return outputBatch | |
class VisualFrontend(nn.Module): | |
""" | |
A visual feature extraction module. Generates a 512-dim feature vector per video frame. | |
Architecture: A 3D convolution block followed by an 18-layer ResNet. | |
""" | |
def __init__(self, args): | |
super(VisualFrontend, self).__init__() | |
self.args =args | |
if self.args.causal: | |
padding = (4,3,3) | |
else: | |
padding = (2,3,3) | |
self.frontend3D = nn.Sequential( | |
nn.Conv3d(1, 64, kernel_size=(5,7,7), stride=(1,2,2), padding=padding, bias=False), | |
nn.BatchNorm3d(64, momentum=0.01, eps=0.001), | |
nn.ReLU(), | |
nn.MaxPool3d(kernel_size=(1,3,3), stride=(1,2,2), padding=(0,1,1)) | |
) | |
self.resnet = ResNet() | |
return | |
def forward(self, batch): | |
batchsize = batch.shape[0] | |
batch = self.frontend3D[0](batch) | |
if self.args.causal: | |
batch = batch[:,:,:-4,:,:] | |
batch = self.frontend3D[1](batch) | |
batch = self.frontend3D[2](batch) | |
batch = self.frontend3D[3](batch) | |
batch = batch.transpose(1, 2) | |
batch = batch.reshape(batch.shape[0]*batch.shape[1], batch.shape[2], batch.shape[3], batch.shape[4]) | |
outputBatch = self.resnet(batch) | |
outputBatch = outputBatch.reshape(batchsize, -1, 512) | |
outputBatch = outputBatch.transpose(1 ,2) | |
return outputBatch | |
class VisualConv1D(nn.Module): | |
def __init__(self, args, V=256, H=512, kernel_size=3, dilation=1): | |
super(VisualConv1D, self).__init__() | |
self.args =args | |
self.relu_0 = nn.ReLU() | |
self.norm_0 = nn.BatchNorm1d(V) | |
self.conv1x1 = nn.Conv1d(V, H, 1, bias=False) | |
self.relu = nn.ReLU() | |
self.norm_1 = nn.BatchNorm1d(H) | |
self.dconv_pad = (dilation * (kernel_size - 1)) // 2 if not self.args.causal else ( | |
dilation * (kernel_size - 1)) | |
self.dsconv = nn.Conv1d(H, H, kernel_size, stride=1, padding=self.dconv_pad, dilation=1, groups=H) | |
self.prelu = nn.PReLU() | |
self.norm_2 = nn.BatchNorm1d(H) | |
self.pw_conv = nn.Conv1d(H, V, 1, bias=False) | |
def forward(self, x): | |
out = self.relu_0(x) | |
out = self.norm_0(out) | |
out = self.conv1x1(out) | |
out = self.relu(out) | |
out = self.norm_1(out) | |
out = self.dsconv(out) | |
if self.args.causal: | |
out = out[:, :, :-self.dconv_pad] | |
out = self.prelu(out) | |
out = self.norm_2(out) | |
out = self.pw_conv(out) | |
return out + x | |