ClearVoice / models /mossformer2_ss /mossformer2.py.bk
alibabasglab's picture
Upload 161 files
8e8cd3e verified
raw
history blame
21.4 kB
"""
modified from https://github.com/speechbrain/speechbrain/blob/develop/speechbrain/lobes/models/dual_path.py
#Author: Shengkui Zhao
"""
import math
import torch
import torch.nn as nn
import torch.nn.functional as F
import copy
from models.mossformer2_ss.mossformer2_block import ScaledSinuEmbedding, MossformerBlock_GFSMN, MossformerBlock
EPS = 1e-8
class GlobalLayerNorm(nn.Module):
"""Calculate Global Layer Normalization.
Arguments
---------
dim : (int or list or torch.Size)
Input shape from an expected input of size.
eps : float
A value added to the denominator for numerical stability.
elementwise_affine : bool
A boolean value that when set to True,
this module has learnable per-element affine parameters
initialized to ones (for weights) and zeros (for biases).
Example
-------
>>> x = torch.randn(5, 10, 20)
>>> GLN = GlobalLayerNorm(10, 3)
>>> x_norm = GLN(x)
"""
def __init__(self, dim, shape, eps=1e-8, elementwise_affine=True):
super(GlobalLayerNorm, self).__init__()
self.dim = dim
self.eps = eps
self.elementwise_affine = elementwise_affine
if self.elementwise_affine:
if shape == 3:
self.weight = nn.Parameter(torch.ones(self.dim, 1))
self.bias = nn.Parameter(torch.zeros(self.dim, 1))
if shape == 4:
self.weight = nn.Parameter(torch.ones(self.dim, 1, 1))
self.bias = nn.Parameter(torch.zeros(self.dim, 1, 1))
else:
self.register_parameter("weight", None)
self.register_parameter("bias", None)
def forward(self, x):
"""Returns the normalized tensor.
Arguments
---------
x : torch.Tensor
Tensor of size [N, C, K, S] or [N, C, L].
"""
# x = N x C x K x S or N x C x L
# N x 1 x 1
# cln: mean,var N x 1 x K x S
# gln: mean,var N x 1 x 1
if x.dim() == 3:
mean = torch.mean(x, (1, 2), keepdim=True)
var = torch.mean((x - mean) ** 2, (1, 2), keepdim=True)
if self.elementwise_affine:
x = (
self.weight * (x - mean) / torch.sqrt(var + self.eps)
+ self.bias
)
else:
x = (x - mean) / torch.sqrt(var + self.eps)
if x.dim() == 4:
mean = torch.mean(x, (1, 2, 3), keepdim=True)
var = torch.mean((x - mean) ** 2, (1, 2, 3), keepdim=True)
if self.elementwise_affine:
x = (
self.weight * (x - mean) / torch.sqrt(var + self.eps)
+ self.bias
)
else:
x = (x - mean) / torch.sqrt(var + self.eps)
return x
class CumulativeLayerNorm(nn.LayerNorm):
"""Calculate Cumulative Layer Normalization.
Arguments
---------
dim : int
Dimension that you want to normalize.
elementwise_affine : True
Learnable per-element affine parameters.
Example
-------
>>> x = torch.randn(5, 10, 20)
>>> CLN = CumulativeLayerNorm(10)
>>> x_norm = CLN(x)
"""
def __init__(self, dim, elementwise_affine=True):
super(CumulativeLayerNorm, self).__init__(
dim, elementwise_affine=elementwise_affine, eps=1e-8
)
def forward(self, x):
"""Returns the normalized tensor.
Arguments
---------
x : torch.Tensor
Tensor size [N, C, K, S] or [N, C, L]
"""
# x: N x C x K x S or N x C x L
# N x K x S x C
if x.dim() == 4:
x = x.permute(0, 2, 3, 1).contiguous()
# N x K x S x C == only channel norm
x = super().forward(x)
# N x C x K x S
x = x.permute(0, 3, 1, 2).contiguous()
if x.dim() == 3:
x = torch.transpose(x, 1, 2)
# N x L x C == only channel norm
x = super().forward(x)
# N x C x L
x = torch.transpose(x, 1, 2)
return x
def select_norm(norm, dim, shape):
"""Just a wrapper to select the normalization type.
"""
if norm == "gln":
return GlobalLayerNorm(dim, shape, elementwise_affine=True)
if norm == "cln":
return CumulativeLayerNorm(dim, elementwise_affine=True)
if norm == "ln":
return nn.GroupNorm(1, dim, eps=1e-8)
else:
return nn.BatchNorm1d(dim)
class Encoder(nn.Module):
"""Convolutional Encoder Layer.
Arguments
---------
kernel_size : int
Length of filters.
in_channels : int
Number of input channels.
out_channels : int
Number of output channels.
Example
-------
>>> x = torch.randn(2, 1000)
>>> encoder = Encoder(kernel_size=4, out_channels=64)
>>> h = encoder(x)
>>> h.shape
torch.Size([2, 64, 499])
"""
def __init__(self, kernel_size=2, out_channels=64, in_channels=1):
super(Encoder, self).__init__()
self.conv1d = nn.Conv1d(
in_channels=in_channels,
out_channels=out_channels,
kernel_size=kernel_size,
stride=kernel_size // 2,
groups=1,
bias=False,
)
self.in_channels = in_channels
def forward(self, x):
"""Return the encoded output.
Arguments
---------
x : torch.Tensor
Input tensor with dimensionality [B, L].
Return
------
x : torch.Tensor
Encoded tensor with dimensionality [B, N, T_out].
where B = Batchsize
L = Number of timepoints
N = Number of filters
T_out = Number of timepoints at the output of the encoder
"""
# B x L -> B x 1 x L
if self.in_channels == 1:
x = torch.unsqueeze(x, dim=1)
# B x 1 x L -> B x N x T_out
x = self.conv1d(x)
x = F.relu(x)
return x
class Decoder(nn.ConvTranspose1d):
"""A decoder layer that consists of ConvTranspose1d.
Arguments
---------
kernel_size : int
Length of filters.
in_channels : int
Number of input channels.
out_channels : int
Number of output channels.
Example
---------
>>> x = torch.randn(2, 100, 1000)
>>> decoder = Decoder(kernel_size=4, in_channels=100, out_channels=1)
>>> h = decoder(x)
>>> h.shape
torch.Size([2, 1003])
"""
def __init__(self, *args, **kwargs):
super(Decoder, self).__init__(*args, **kwargs)
def forward(self, x):
"""Return the decoded output.
Arguments
---------
x : torch.Tensor
Input tensor with dimensionality [B, N, L].
where, B = Batchsize,
N = number of filters
L = time points
"""
if x.dim() not in [2, 3]:
raise RuntimeError(
"{} accept 3/4D tensor as input".format(self.__name__)
)
x = super().forward(x if x.dim() == 3 else torch.unsqueeze(x, 1))
if torch.squeeze(x).dim() == 1:
x = torch.squeeze(x, dim=1)
else:
x = torch.squeeze(x)
return x
class IdentityBlock:
"""This block is used when we want to have identity transformation within the Dual_path block.
Example
-------
>>> x = torch.randn(10, 100)
>>> IB = IdentityBlock()
>>> xhat = IB(x)
"""
def _init__(self, **kwargs):
pass
def __call__(self, x):
return x
class MossFormerM(nn.Module):
"""This class implements the MossFormer2 block.
Arguments
---------
num_blocks : int
Number of mossformer blocks to include.
d_model : int
The dimension of the input embedding.
attn_dropout : float
Dropout for the self-attention (Optional).
group_size: int
the chunk size
query_key_dim: int
the attention vector dimension
expansion_factor: int
the expansion factor for the linear projection in conv module
causal: bool
true for causal / false for non causal
Example
-------
>>> import torch
>>> x = torch.rand((8, 60, 512))
>>> net = MossFormerM(num_blocks=8, d_model=512)
>>> output, _ = net(x)
>>> output.shape
torch.Size([8, 60, 512])
"""
def __init__(
self,
num_blocks,
d_model=None,
causal=False,
group_size = 256,
query_key_dim = 128,
expansion_factor = 4.,
attn_dropout = 0.1
):
super().__init__()
self.mossformerM = MossformerBlock_GFSMN(
dim=d_model,
depth=num_blocks,
group_size=group_size,
query_key_dim=query_key_dim,
expansion_factor=expansion_factor,
causal=causal,
attn_dropout=attn_dropout
)
self.norm = nn.LayerNorm(d_model, eps=1e-6)
def forward(
self,
src,
):
"""
Arguments
----------
src : torch.Tensor
Tensor shape [B, L, N],
where, B = Batchsize,
L = time points
N = number of filters
The sequence to the encoder layer (required).
src_mask : tensor
The mask for the src sequence (optional).
src_key_padding_mask : tensor
The mask for the src keys per batch (optional).
"""
output = self.mossformerM(src)
output = self.norm(output)
return output
class MossFormerM2(nn.Module):
"""This class implements the MossFormer block.
Arguments
---------
num_blocks : int
Number of mossformer blocks to include.
d_model : int
The dimension of the input embedding.
attn_dropout : float
Dropout for the self-attention (Optional).
group_size: int
the chunk size
query_key_dim: int
the attention vector dimension
expansion_factor: int
the expansion factor for the linear projection in conv module
causal: bool
true for causal / false for non causal
Example
-------
>>> import torch
>>> x = torch.rand((8, 60, 512))
>>> net = MossFormerM2(num_blocks=8, d_model=512)
>>> output, _ = net(x)
>>> output.shape
torch.Size([8, 60, 512])
"""
def __init__(
self,
num_blocks,
d_model=None,
causal=False,
group_size = 256,
query_key_dim = 128,
expansion_factor = 4.,
attn_dropout = 0.1
):
super().__init__()
self.mossformerM = MossformerBlock(
dim=d_model,
depth=num_blocks,
group_size=group_size,
query_key_dim=query_key_dim,
expansion_factor=expansion_factor,
causal=causal,
attn_dropout=attn_dropout
)
self.norm = nn.LayerNorm(d_model, eps=1e-6)
def forward(
self,
src,
):
"""
Arguments
----------
src : torch.Tensor
Tensor shape [B, L, N],
where, B = Batchsize,
L = time points
N = number of filters
The sequence to the encoder layer (required).
src_mask : tensor
The mask for the src sequence (optional).
src_key_padding_mask : tensor
The mask for the src keys per batch (optional).
"""
output = self.mossformerM(src)
output = self.norm(output)
return output
class Computation_Block(nn.Module):
"""Computation block for dual-path processing.
Arguments
---------
intra_mdl : torch.nn.module
Model to process within the chunks.
inter_mdl : torch.nn.module
Model to process across the chunks.
out_channels : int
Dimensionality of inter/intra model.
norm : str
Normalization type.
skip_around_intra : bool
Skip connection around the intra layer.
linear_layer_after_inter_intra : bool
Linear layer or not after inter or intra.
Example
---------
>>> comp_block = Computation_Block(64)
>>> x = torch.randn(10, 64, 100)
>>> x = comp_block(x)
>>> x.shape
torch.Size([10, 64, 100])
"""
def __init__(
self,
num_blocks,
out_channels,
norm="ln",
skip_around_intra=True,
):
super(Computation_Block, self).__init__()
##MossFormer+: MossFormer with recurrence
self.intra_mdl = MossFormerM(num_blocks=num_blocks, d_model=out_channels)
##MossFormerM2: the orignal MossFormer
#self.intra_mdl = MossFormerM2(num_blocks=num_blocks, d_model=out_channels)
self.skip_around_intra = skip_around_intra
# Norm
self.norm = norm
if norm is not None:
self.intra_norm = select_norm(norm, out_channels, 3)
def forward(self, x):
"""Returns the output tensor.
Arguments
---------
x : torch.Tensor
Input tensor of dimension [B, N, S].
Return
---------
out: torch.Tensor
Output tensor of dimension [B, N, S].
where, B = Batchsize,
N = number of filters
S = sequence time index
"""
B, N, S = x.shape
# [B, S, N]
intra = x.permute(0, 2, 1).contiguous() #.view(B, S, N)
intra = self.intra_mdl(intra)
# [B, N, S]
intra = intra.permute(0, 2, 1).contiguous()
if self.norm is not None:
intra = self.intra_norm(intra)
# [B, N, S]
if self.skip_around_intra:
intra = intra + x
out = intra
return out
class MossFormer_MaskNet(nn.Module):
"""The MossFormer MaskNet for predicting mask for encoder output features.
The MossFormer2 model uses an upgraded MaskNet structure
Arguments
---------
in_channels : int
Number of channels at the output of the encoder.
out_channels : int
Number of channels that would be inputted to the intra and inter blocks.
intra_model : torch.nn.module
Model to process within the chunks.
num_layers : int
Number of layers of Dual Computation Block.
norm : str
Normalization type.
num_spks : int
Number of sources (speakers).
skip_around_intra : bool
Skip connection around intra.
use_global_pos_enc : bool
Global positional encodings.
max_length : int
Maximum sequence length.
Example
---------
>>> mossformer_masknet = MossFormer_MaskNet(64, 64, num_spks=2)
>>> x = torch.randn(10, 64, 2000)
>>> x = mossformer_masknet(x)
>>> x.shape
torch.Size([2, 10, 64, 2000])
"""
def __init__(
self,
in_channels,
out_channels,
num_blocks=24,
norm="ln",
num_spks=2,
skip_around_intra=True,
use_global_pos_enc=True,
max_length=20000,
):
super(MossFormer_MaskNet, self).__init__()
self.num_spks = num_spks
self.num_blocks = num_blocks
self.norm = select_norm(norm, in_channels, 3)
self.conv1d_encoder = nn.Conv1d(in_channels, out_channels, 1, bias=False)
self.use_global_pos_enc = use_global_pos_enc
if self.use_global_pos_enc:
self.pos_enc = ScaledSinuEmbedding(out_channels)
self.mdl = Computation_Block(
num_blocks,
out_channels,
norm,
skip_around_intra=skip_around_intra,
)
self.conv1d_out = nn.Conv1d(
out_channels, out_channels * num_spks, kernel_size=1
)
self.conv1_decoder = nn.Conv1d(out_channels, in_channels, 1, bias=False)
self.prelu = nn.PReLU()
self.activation = nn.ReLU()
# gated output layer
self.output = nn.Sequential(
nn.Conv1d(out_channels, out_channels, 1), nn.Tanh()
)
self.output_gate = nn.Sequential(
nn.Conv1d(out_channels, out_channels, 1), nn.Sigmoid()
)
def forward(self, x):
"""Returns the output tensor.
Arguments
---------
x : torch.Tensor
Input tensor of dimension [B, N, S].
Returns
-------
out : torch.Tensor
Output tensor of dimension [spks, B, N, S]
where, spks = Number of speakers
B = Batchsize,
N = number of filters
S = the number of time frames
"""
# before each line we indicate the shape after executing the line
# [B, N, L]
x = self.norm(x)
# [B, N, L]
x = self.conv1d_encoder(x)
if self.use_global_pos_enc:
base = x
x = x.transpose(1, -1)
emb = self.pos_enc(x)
emb = emb.transpose(0, -1)
x = base + emb
# [B, N, S]
x = self.mdl(x)
x = self.prelu(x)
# [B, N*spks, S]
x = self.conv1d_out(x)
B, _, S = x.shape
# [B*spks, N, S]
x = x.view(B * self.num_spks, -1, S)
# [B*spks, N, S]
x = self.output(x) * self.output_gate(x)
# [B*spks, N, S]
x = self.conv1_decoder(x)
# [B, spks, N, S]
_, N, L = x.shape
x = x.view(B, self.num_spks, N, L)
x = self.activation(x)
# [spks, B, N, S]
x = x.transpose(0, 1)
return x
class MossFormer(nn.Module):
""" The E2E Encoder-MaskNet-Decoder MossFormer model for speech separation
The MossFormer2 model uses an upgraded MaskNet
---------
Arguments
---------
in_channels : int
Number of channels at the output of the encoder.
out_channels : int
Number of channels that would be inputted to the MossFormer2 blocks.
num_layers : int
Number of layers of Dual Computation Block.
norm : str
Normalization type.
num_spks : int
Number of sources (speakers).
skip_around_intra : bool
Skip connection around intra.
use_global_pos_enc : bool
Global positional encodings.
max_length : int
Maximum sequence length.
Example
---------
>>> mossformer = MossFormer(num_spks=2)
>>> x = torch.randn(1, 10000)
>>> x = mossformer(x)
>>> x
x[0]: torch.Size([1, 10000])
x[1]: torch.Size([1, 10000])
"""
def __init__(
self,
in_channels=512,
out_channels=512,
num_blocks=24,
kernel_size=16,
norm="ln",
num_spks=2,
skip_around_intra=True,
use_global_pos_enc=True,
max_length=20000,
):
super(MossFormer, self).__init__()
self.num_spks = num_spks
self.enc = Encoder(kernel_size=kernel_size, out_channels=in_channels, in_channels=1)
self.mask_net = MossFormer_MaskNet(
in_channels=in_channels,
out_channels=out_channels,
num_blocks=num_blocks,
norm=norm,
num_spks=num_spks,
skip_around_intra=skip_around_intra,
use_global_pos_enc=use_global_pos_enc,
max_length=max_length,
)
self.dec = Decoder(
in_channels=out_channels,
out_channels=1,
kernel_size=kernel_size,
stride = kernel_size//2,
bias=False
)
def forward(self, input):
x = self.enc(input)
mask = self.mask_net(x)
x = torch.stack([x] * self.num_spks)
sep_x = x * mask
# Decoding
est_source = torch.cat(
[
self.dec(sep_x[i]).unsqueeze(-1)
for i in range(self.num_spks)
],
dim=-1,
)
T_origin = input.size(1)
T_est = est_source.size(1)
if T_origin > T_est:
est_source = F.pad(est_source, (0, 0, 0, T_origin - T_est))
else:
est_source = est_source[:, :T_origin, :]
out = []
for spk in range(self.num_spks):
out.append(est_source[:,:,spk])
return out
class MossFormer2_SS_16K(nn.Module):
"""MossFormer2 model wrapper for outside calling"""
def __init__(self, args):
super(MossFormer2_SS_16K, self).__init__()
self.model = MossFormer(
in_channels=args.encoder_embedding_dim,
out_channels=args.mossformer_sequence_dim,
num_blocks=args.num_mossformer_layer,
kernel_size=args.encoder_kernel_size,
norm="ln",
num_spks=args.num_spks,
skip_around_intra=True,
use_global_pos_enc=True,
max_length=20000)
def forward(self, x):
outputs = self.model(x)
return outputs