alibabasglab's picture
Upload 161 files
8e8cd3e verified
raw
history blame
19 kB
import torch
import torch.nn as nn
import torch.nn.functional as F
import models.frcrn_se.complex_nn as complex_nn
from models.frcrn_se.se_layer import SELayer
class Encoder(nn.Module):
"""
Encoder module for a neural network, responsible for downsampling input features.
This module consists of a convolutional layer followed by batch normalization and a Leaky ReLU activation.
Args:
in_channels (int): Number of input channels.
out_channels (int): Number of output channels.
kernel_size (tuple): Size of the convolutional kernel.
stride (tuple): Stride of the convolution.
padding (tuple, optional): Padding for the convolution. If None, 'SAME' padding is applied.
complex (bool, optional): If True, use complex convolution layers. Default is False.
padding_mode (str, optional): Padding mode for convolution. Default is "zeros".
"""
def __init__(self, in_channels, out_channels, kernel_size, stride, padding=None, complex=False, padding_mode="zeros"):
super().__init__()
# Determine padding for 'SAME' padding if not provided
if padding is None:
padding = [(i - 1) // 2 for i in kernel_size]
# Select convolution and batch normalization layers based on complex flag
if complex:
conv = complex_nn.ComplexConv2d
bn = complex_nn.ComplexBatchNorm2d
else:
conv = nn.Conv2d
bn = nn.BatchNorm2d
# Define convolutional layer, batch normalization, and activation function
self.conv = conv(in_channels, out_channels, kernel_size=kernel_size, stride=stride, padding=padding, padding_mode=padding_mode)
self.bn = bn(out_channels)
self.relu = nn.LeakyReLU(inplace=True)
def forward(self, x):
"""
Forward pass through the encoder.
Args:
x (torch.Tensor): Input tensor of shape (B, C, H, W) where B is batch size,
C is the number of channels, H is height, and W is width.
Returns:
torch.Tensor: Output tensor after applying convolution, batch normalization, and activation.
"""
x = self.conv(x) # Apply convolution
x = self.bn(x) # Apply batch normalization
x = self.relu(x) # Apply Leaky ReLU activation
return x
class Decoder(nn.Module):
"""
Decoder module for a neural network, responsible for upsampling input features.
This module consists of a transposed convolutional layer followed by batch normalization
and a Leaky ReLU activation.
Args:
in_channels (int): Number of input channels.
out_channels (int): Number of output channels.
kernel_size (tuple): Size of the transposed convolutional kernel.
stride (tuple): Stride of the transposed convolution.
padding (tuple, optional): Padding for the transposed convolution. Default is (0, 0).
complex (bool, optional): If True, use complex transposed convolution layers. Default is False.
"""
def __init__(self, in_channels, out_channels, kernel_size, stride, padding=(0, 0), complex=False):
super().__init__()
# Select transposed convolution and batch normalization layers based on complex flag
if complex:
tconv = complex_nn.ComplexConvTranspose2d
bn = complex_nn.ComplexBatchNorm2d
else:
tconv = nn.ConvTranspose2d
bn = nn.BatchNorm2d
# Define transposed convolutional layer, batch normalization, and activation function
self.transconv = tconv(in_channels, out_channels, kernel_size=kernel_size, stride=stride, padding=padding)
self.bn = bn(out_channels)
self.relu = nn.LeakyReLU(inplace=True)
def forward(self, x):
"""
Forward pass through the decoder.
Args:
x (torch.Tensor): Input tensor of shape (B, C, H, W) where B is batch size,
C is the number of channels, H is height, and W is width.
Returns:
torch.Tensor: Output tensor after applying transposed convolution, batch normalization, and activation.
"""
x = self.transconv(x) # Apply transposed convolution
x = self.bn(x) # Apply batch normalization
x = self.relu(x) # Apply Leaky ReLU activation
return x
class UNet(nn.Module):
"""
U-Net architecture for handling both real and complex inputs.
This model uses an encoder-decoder structure with skip connections between corresponding encoder
and decoder layers. Squeeze-and-Excitation (SE) layers are integrated into the network for channel
attention enhancement.
Args:
input_channels (int, optional): Number of input channels. Default is 1.
complex (bool, optional): If True, use complex layers. Default is False.
model_complexity (int, optional): Determines the number of channels in the model. Default is 45.
model_depth (int, optional): Depth of the U-Net model (number of encoder/decoder pairs). Default is 20.
padding_mode (str, optional): Padding mode for convolutions. Default is "zeros".
"""
def __init__(self, input_channels=1,
complex=False,
model_complexity=45,
model_depth=20,
padding_mode="zeros"):
super().__init__()
# Adjust model complexity for complex models
if complex:
model_complexity = int(model_complexity // 1.414)
# Initialize model parameters based on specified complexity and depth
self.set_size(model_complexity=model_complexity, input_channels=input_channels, model_depth=model_depth)
self.encoders = []
self.model_length = model_depth // 2
self.fsmn = complex_nn.ComplexUniDeepFsmn(128, 128, 128)
self.se_layers_enc = []
self.fsmn_enc = []
# Build the encoder structure
for i in range(self.model_length):
fsmn_enc = complex_nn.ComplexUniDeepFsmn_L1(128, 128, 128)
self.add_module("fsmn_enc{}".format(i), fsmn_enc)
self.fsmn_enc.append(fsmn_enc)
module = Encoder(self.enc_channels[i], self.enc_channels[i + 1], kernel_size=self.enc_kernel_sizes[i],
stride=self.enc_strides[i], padding=self.enc_paddings[i], complex=complex, padding_mode=padding_mode)
self.add_module("encoder{}".format(i), module)
self.encoders.append(module)
se_layer_enc = SELayer(self.enc_channels[i + 1], 8)
self.add_module("se_layer_enc{}".format(i), se_layer_enc)
self.se_layers_enc.append(se_layer_enc)
# Build the decoder structure
self.decoders = []
self.fsmn_dec = []
self.se_layers_dec = []
for i in range(self.model_length):
fsmn_dec = complex_nn.ComplexUniDeepFsmn_L1(128, 128, 128)
self.add_module("fsmn_dec{}".format(i), fsmn_dec)
self.fsmn_dec.append(fsmn_dec)
module = Decoder(self.dec_channels[i] * 2, self.dec_channels[i + 1], kernel_size=self.dec_kernel_sizes[i],
stride=self.dec_strides[i], padding=self.dec_paddings[i], complex=complex)
self.add_module("decoder{}".format(i), module)
self.decoders.append(module)
if i < self.model_length - 1:
se_layer_dec = SELayer(self.dec_channels[i + 1], 8)
self.add_module("se_layer_dec{}".format(i), se_layer_dec)
self.se_layers_dec.append(se_layer_dec)
# Define final linear layer based on complex flag
if complex:
conv = complex_nn.ComplexConv2d
else:
conv = nn.Conv2d
linear = conv(self.dec_channels[-1], 1, 1) # Final layer to output desired channels
self.add_module("linear", linear)
self.complex = complex
self.padding_mode = padding_mode
# Convert lists to ModuleLists for proper parameter registration
self.decoders = nn.ModuleList(self.decoders)
self.encoders = nn.ModuleList(self.encoders)
self.se_layers_enc = nn.ModuleList(self.se_layers_enc)
self.se_layers_dec = nn.ModuleList(self.se_layers_dec)
self.fsmn_enc = nn.ModuleList(self.fsmn_enc)
self.fsmn_dec = nn.ModuleList(self.fsmn_dec)
def forward(self, inputs):
"""
Forward pass for the UNet model.
This method processes the input tensor through the encoder-decoder architecture,
applying convolutional layers, FSMNs, and SE layers. Skip connections are used
to merge features from the encoder to the decoder.
Args:
inputs (torch.Tensor): Input tensor of shape (batch_size, channels, height, width).
Returns:
torch.Tensor: Output tensor after processing, representing the computed features.
"""
x = inputs # Initialize input tensor
xs = [] # List to store input tensors for skip connections
xs_se = [] # List to store outputs after applying SE layers
xs_se.append(x) # Add the initial input to the SE outputs list
# Forward pass through the encoder layers
for i, encoder in enumerate(self.encoders):
xs.append(x) # Store the current input for skip connections
if i > 0:
x = self.fsmn_enc[i](x) # Apply FSMN if not the first encoder
x = encoder(x) # Apply the encoder layer
xs_se.append(self.se_layers_enc[i](x)) # Apply SE layer and store the result
x = self.fsmn(x) # Apply the final FSMN after all encoders
p = x # Initialize output tensor for decoders
# Forward pass through the decoder layers
for i, decoder in enumerate(self.decoders):
p = decoder(p) # Apply the decoder layer
if i < self.model_length - 1:
p = self.fsmn_dec[i](p) # Apply FSMN if not the last decoder
if i == self.model_length - 1:
break # Stop processing at the last decoder layer
if i < self.model_length - 2:
p = self.se_layers_dec[i](p) # Apply SE layer for intermediate decoders
p = torch.cat([p, xs_se[self.model_length - 1 - i]], dim=1) # Concatenate skip connection
# Final output processing
# cmp_spec: [batch, 1, 513, 64, 2]
cmp_spec = self.linear(p) # Apply linear transformation to produce final output
return cmp_spec # Return the computed output tensor
def set_size(self, model_complexity, model_depth=20, input_channels=1):
"""
Set the architecture parameters for the UNet model based on specified complexity and depth.
This method configures the encoder and decoder layers of the UNet by setting the number of channels,
kernel sizes, strides, and paddings for each layer according to the provided model complexity
and depth.
Args:
model_complexity (int): Base number of channels for the model.
model_depth (int, optional): Depth of the UNet model, determining the number of encoder/decoder pairs.
Default is 20.
input_channels (int, optional): Number of input channels to the model. Default is 1.
Raises:
ValueError: If an unknown model depth is provided.
"""
# Configuration for model depth of 14
if model_depth == 14:
# Set encoder channels for model depth of 14
self.enc_channels = [input_channels,
128,
128,
128,
128,
128,
128,
128]
# Define kernel sizes for encoder layers
self.enc_kernel_sizes = [(5, 2),
(5, 2),
(5, 2),
(5, 2),
(5, 2),
(5, 2),
(2, 2)]
# Define strides for encoder layers
self.enc_strides = [(2, 1),
(2, 1),
(2, 1),
(2, 1),
(2, 1),
(2, 1),
(2, 1)]
# Define paddings for encoder layers
self.enc_paddings = [(0, 1),
(0, 1),
(0, 1),
(0, 1),
(0, 1),
(0, 1),
(0, 1)]
# Set decoder channels for model depth of 14
self.dec_channels = [64,
128,
128,
128,
128,
128,
128,
1]
# Define kernel sizes for decoder layers
self.dec_kernel_sizes = [(2, 2),
(5, 2),
(5, 2),
(5, 2),
(6, 2),
(5, 2),
(5, 2)]
# Define strides for decoder layers
self.dec_strides = [(2, 1),
(2, 1),
(2, 1),
(2, 1),
(2, 1),
(2, 1),
(2, 1)]
# Define paddings for decoder layers
self.dec_paddings = [(0, 1),
(0, 1),
(0, 1),
(0, 1),
(0, 1),
(0, 1),
(0, 1)]
# Configuration for model depth of 20
elif model_depth == 20:
# Set encoder channels for model depth of 20
self.enc_channels = [input_channels,
model_complexity,
model_complexity,
model_complexity * 2,
model_complexity * 2,
model_complexity * 2,
model_complexity * 2,
model_complexity * 2,
model_complexity * 2,
model_complexity * 2,
128]
# Define kernel sizes for encoder layers
self.enc_kernel_sizes = [(7, 1),
(1, 7),
(6, 4),
(7, 5),
(5, 3),
(5, 3),
(5, 3),
(5, 3),
(5, 3),
(5, 3)]
# Define strides for encoder layers
self.enc_strides = [(1, 1),
(1, 1),
(2, 2),
(2, 1),
(2, 2),
(2, 1),
(2, 2),
(2, 1),
(2, 2),
(2, 1)]
# Define paddings for encoder layers
self.enc_paddings = [(3, 0),
(0, 3),
None, # None padding for certain layers
None,
None, # Adjusted padding based on layer requirements
None,
None,
None,
None,
None]
# Set decoder channels for model depth of 20
self.dec_channels = [0,
model_complexity * 2,
model_complexity * 2,
model_complexity * 2,
model_complexity * 2,
model_complexity * 2,
model_complexity * 2,
model_complexity * 2,
model_complexity * 2,
model_complexity * 2,
model_complexity * 2,
model_complexity * 2]
# Define kernel sizes for decoder layers
self.dec_kernel_sizes = [(4, 3),
(4, 2),
(4, 3),
(4, 2),
(4, 3),
(4, 2),
(6, 3),
(7, 4),
(1, 7),
(7, 1)]
# Define strides for decoder layers
self.dec_strides = [(2, 1),
(2, 2),
(2, 1),
(2, 2),
(2, 1),
(2, 2),
(2, 1),
(2, 2),
(1, 1),
(1, 1)]
# Define paddings for decoder layers
self.dec_paddings = [(1, 1),
(1, 0),
(1, 1),
(1, 0),
(1, 1),
(1, 0),
(2, 1),
(2, 1),
(0, 3),
(3, 0)]
else:
# Raise an error if an unknown model depth is specified
raise ValueError("Unknown model depth : {}".format(model_depth))