alibabasglab's picture
Upload 161 files
8e8cd3e verified
raw
history blame
36.6 kB
import math
from collections import OrderedDict
from typing import Dict, List, Optional, Tuple, Union
import torch
import torch.nn as nn
import torch.nn.functional as F
from packaging.version import parse as V
from torch.nn import init
from torch.nn.parameter import Parameter
from models.mossformer_gan_se.fsmn import UniDeepFsmn
from models.mossformer_gan_se.conv_module import ConvModule
from models.mossformer_gan_se.mossformer import MossFormer
from models.mossformer_gan_se.se_layer import SELayer
from models.mossformer_gan_se.get_layer_from_string import get_layer
from models.mossformer_gan_se.discriminator import Discriminator
# Check if the installed version of PyTorch is 1.9.0 or higher
is_torch_1_9_plus = V(torch.__version__) >= V("1.9.0")
class MossFormerGAN_SE_16K(nn.Module):
"""
MossFormerGAN_SE_16K: A GAN-based speech enhancement model for 16kHz input audio.
This model integrates a synchronous attention network (SyncANet) for
feature extraction. Depending on the mode (train or inference), it may
also include a discriminator for adversarial training.
Args:
args (Namespace): Arguments containing configuration parameters,
including 'fft_len' and 'mode'.
"""
def __init__(self, args):
"""Initializes the MossFormerGAN_SE_16K model."""
super(MossFormerGAN_SE_16K, self).__init__()
# Initialize SyncANet with specified number of channels and features
self.model = SyncANet(num_channel=64, num_features=args.fft_len // 2 + 1)
# Initialize discriminator if in training mode
if args.mode == 'train':
self.discriminator = Discriminator(ndf=16)
else:
self.discriminator = None
def forward(self, x):
"""
Defines the forward pass of the MossFormerGAN_SE_16K model.
Args:
x (torch.Tensor): Input tensor of shape [batch_size, num_channels, height, width].
Returns:
Tuple[torch.Tensor, torch.Tensor]: Output tensors representing the real and imaginary parts.
"""
output_real, output_imag = self.model(x) # Get real and imaginary outputs from the model
return output_real, output_imag # Return the outputs
class FSMN_Wrap(nn.Module):
"""
FSMN_Wrap: A wrapper around the UniDeepFsmn module to facilitate
integration into the larger model architecture.
Args:
nIn (int): Number of input features.
nHidden (int): Number of hidden features in the FSMN (default is 128).
lorder (int): Order of the FSMN (default is 20).
nOut (int): Number of output features (default is 128).
"""
def __init__(self, nIn, nHidden=128, lorder=20, nOut=128):
"""Initializes the FSMN_Wrap module with specified parameters."""
super(FSMN_Wrap, self).__init__()
# Initialize the UniDeepFsmn module
self.fsmn = UniDeepFsmn(nIn, nHidden, lorder, nHidden)
def forward(self, x):
"""
Defines the forward pass of the FSMN_Wrap module.
Args:
x (torch.Tensor): Input tensor of shape [batch_size, channels, height, time, 2].
Returns:
torch.Tensor: Output tensor reshaped to [batch_size, channels, height, time].
"""
# Shape of input x: [b, c, h, T, 2]
b, c, T, h = x.size()
# Permute x to reshape it for FSMN processing: [b, T, h, c]
x = x.permute(0, 2, 3, 1) # Change dimensions to [b, T, h, c]
x = torch.reshape(x, (b * T, h, c)) # Reshape to [b*T, h, c]
# Pass through the FSMN
output = self.fsmn(x) # output: [b*T, h, c]
# Reshape output back to original dimensions
output = torch.reshape(output, (b, T, h, c)) # output: [b, T, h, c]
return output.permute(0, 3, 1, 2) # Final output shape: [b, c, h, T]
class DilatedDenseNet(nn.Module):
"""
DilatedDenseNet: A dilated dense network for feature extraction.
This network consists of a series of dilated convolutions organized in a dense block structure,
allowing for efficient feature reuse and capturing multi-scale information.
Args:
depth (int): The number of layers in the dense block (default is 4).
in_channels (int): The number of input channels for the first layer (default is 64).
"""
def __init__(self, depth=4, in_channels=64):
"""Initializes the DilatedDenseNet with specified depth and input channels."""
super(DilatedDenseNet, self).__init__()
self.depth = depth
self.in_channels = in_channels
self.pad = nn.ConstantPad2d((1, 1, 1, 0), value=0.) # Padding for the first layer
self.twidth = 2 # Temporal width for convolutions
self.kernel_size = (self.twidth, 3) # Kernel size for convolutions
# Initialize dilated convolutions, padding, normalization, and FSMN for each layer
for i in range(self.depth):
dil = 2 ** i # Dilation factor for the current layer
pad_length = self.twidth + (dil - 1) * (self.twidth - 1) - 1 # Calculate padding length
setattr(self, 'pad{}'.format(i + 1), nn.ConstantPad2d((1, 1, pad_length, 0), value=0.))
setattr(self, 'conv{}'.format(i + 1),
nn.Conv2d(self.in_channels * (i + 1), self.in_channels, kernel_size=self.kernel_size,
dilation=(dil, 1))) # Convolution layer
setattr(self, 'norm{}'.format(i + 1), nn.InstanceNorm2d(in_channels, affine=True)) # Normalization
setattr(self, 'prelu{}'.format(i + 1), nn.PReLU(self.in_channels)) # Activation function
setattr(self, 'fsmn{}'.format(i + 1), FSMN_Wrap(nIn=self.in_channels, nHidden=self.in_channels, lorder=5, nOut=self.in_channels))
def forward(self, x):
"""
Defines the forward pass for the DilatedDenseNet.
Args:
x (torch.Tensor): Input tensor of shape [batch_size, channels, height, width].
Returns:
torch.Tensor: Output tensor after processing through the dense network.
"""
skip = x # Initialize skip connection with input
for i in range(self.depth):
# Apply padding, convolution, normalization, activation, and FSMN in sequence
out = getattr(self, 'pad{}'.format(i + 1))(skip)
out = getattr(self, 'conv{}'.format(i + 1))(out)
out = getattr(self, 'norm{}'.format(i + 1))(out)
out = getattr(self, 'prelu{}'.format(i + 1))(out)
out = getattr(self, 'fsmn{}'.format(i + 1))(out)
skip = torch.cat([out, skip], dim=1) # Concatenate outputs for dense connectivity
return out # Return the final output
class DenseEncoder(nn.Module):
"""
DenseEncoder: A dense encoding module for feature extraction from input data.
This module consists of a series of convolutional layers followed by a
dilated dense network for robust feature learning.
Args:
in_channel (int): Number of input channels for the encoder.
channels (int): Number of output channels for each convolutional layer (default is 64).
"""
def __init__(self, in_channel, channels=64):
"""Initializes the DenseEncoder with specified input channels and feature size."""
super(DenseEncoder, self).__init__()
self.conv_1 = nn.Sequential(
nn.Conv2d(in_channel, channels, (1, 1), (1, 1)), # Initial convolution layer
nn.InstanceNorm2d(channels, affine=True), # Normalization layer
nn.PReLU(channels) # Activation function
)
self.dilated_dense = DilatedDenseNet(depth=4, in_channels=channels) # Dilated Dense Network
self.conv_2 = nn.Sequential(
nn.Conv2d(channels, channels, (1, 3), (1, 2), padding=(0, 1)), # Second convolution layer
nn.InstanceNorm2d(channels, affine=True), # Normalization layer
nn.PReLU(channels) # Activation function
)
def forward(self, x):
"""
Defines the forward pass for the DenseEncoder.
Args:
x (torch.Tensor): Input tensor of shape [batch_size, in_channel, height, width].
Returns:
torch.Tensor: Output tensor after processing through the encoder.
"""
x = self.conv_1(x) # Process through the first convolutional layer
x = self.dilated_dense(x) # Process through the dilated dense network
x = self.conv_2(x) # Process through the second convolutional layer
return x # Return the final output
class SPConvTranspose2d(nn.Module):
"""
SPConvTranspose2d: A spatially separable convolution transpose layer.
This module implements a transposed convolution operation with spatial separability,
allowing for efficient upsampling and feature extraction.
Args:
in_channels (int): Number of input channels.
out_channels (int): Number of output channels.
kernel_size (tuple): Size of the convolution kernel.
r (int): Upsampling rate (default is 1).
"""
def __init__(self, in_channels, out_channels, kernel_size, r=1):
"""Initializes the SPConvTranspose2d with specified parameters."""
super(SPConvTranspose2d, self).__init__()
self.pad1 = nn.ConstantPad2d((1, 1, 0, 0), value=0.) # Padding for input
self.out_channels = out_channels # Store number of output channels
self.conv = nn.Conv2d(in_channels, out_channels * r, kernel_size=kernel_size, stride=(1, 1)) # Convolution layer
self.r = r # Store the upsampling rate
def forward(self, x):
"""
Defines the forward pass for the SPConvTranspose2d module.
Args:
x (torch.Tensor): Input tensor of shape [batch_size, in_channels, height, width].
Returns:
torch.Tensor: Output tensor after transposed convolution operation.
"""
x = self.pad1(x) # Apply padding to input
out = self.conv(x) # Perform convolution operation
batch_size, nchannels, H, W = out.shape # Get output shape
out = out.view((batch_size, self.r, nchannels // self.r, H, W)) # Reshape output for separation
out = out.permute(0, 2, 3, 4, 1) # Rearrange dimensions
out = out.contiguous().view((batch_size, nchannels // self.r, H, -1)) # Final output shape
return out # Return the final output
class MaskDecoder(nn.Module):
"""
MaskDecoder: A decoder module for estimating masks used in audio processing.
This module utilizes a dilated dense network to capture features and
applies sub-pixel convolution to upscale the output. It produces
a mask that can be applied to the magnitude of audio signals.
Args:
num_features (int): The number of features in the output mask.
num_channel (int): The number of channels in intermediate layers (default is 64).
out_channel (int): The number of output channels for the final output mask (default is 1).
"""
def __init__(self, num_features, num_channel=64, out_channel=1):
"""Initializes the MaskDecoder with specified parameters."""
super(MaskDecoder, self).__init__()
self.dense_block = DilatedDenseNet(depth=4, in_channels=num_channel) # Dense feature extraction
self.sub_pixel = SPConvTranspose2d(num_channel, num_channel, (1, 3), 2) # Sub-pixel convolution for upsampling
self.conv_1 = nn.Conv2d(num_channel, out_channel, (1, 2)) # Convolution layer to produce mask
self.norm = nn.InstanceNorm2d(out_channel, affine=True) # Normalization layer
self.prelu = nn.PReLU(out_channel) # Activation function
self.final_conv = nn.Conv2d(out_channel, out_channel, (1, 1)) # Final convolution layer
self.prelu_out = nn.PReLU(num_features, init=-0.25) # Final activation for output mask
def forward(self, x):
"""
Defines the forward pass for the MaskDecoder.
Args:
x (torch.Tensor): Input tensor of shape [batch_size, channels, height, width].
Returns:
torch.Tensor: Output mask tensor after processing through the decoder.
"""
x = self.dense_block(x) # Feature extraction using dilated dense block
x = self.sub_pixel(x) # Upsample the features
x = self.conv_1(x) # Convolution to estimate the mask
x = self.prelu(self.norm(x)) # Apply normalization and activation
x = self.final_conv(x).permute(0, 3, 2, 1).squeeze(-1) # Final convolution and rearrangement
return self.prelu_out(x).permute(0, 2, 1).unsqueeze(1) # Final output shape
class ComplexDecoder(nn.Module):
"""
ComplexDecoder: A decoder module for estimating complex-valued outputs.
This module processes features through a dilated dense network and a
sub-pixel convolution layer to generate two output channels representing
the real and imaginary parts of the complex output.
Args:
num_channel (int): The number of channels in intermediate layers (default is 64).
"""
def __init__(self, num_channel=64):
"""Initializes the ComplexDecoder with specified parameters."""
super(ComplexDecoder, self).__init__()
self.dense_block = DilatedDenseNet(depth=4, in_channels=num_channel) # Dense feature extraction
self.sub_pixel = SPConvTranspose2d(num_channel, num_channel, (1, 3), 2) # Sub-pixel convolution for upsampling
self.prelu = nn.PReLU(num_channel) # Activation function
self.norm = nn.InstanceNorm2d(num_channel, affine=True) # Normalization layer
self.conv = nn.Conv2d(num_channel, 2, (1, 2)) # Convolution layer to produce complex outputs
def forward(self, x):
"""
Defines the forward pass for the ComplexDecoder.
Args:
x (torch.Tensor): Input tensor of shape [batch_size, channels, height, width].
Returns:
torch.Tensor: Output tensor containing real and imaginary parts.
"""
x = self.dense_block(x) # Feature extraction using dilated dense block
x = self.sub_pixel(x) # Upsample the features
x = self.prelu(self.norm(x)) # Apply normalization and activation
x = self.conv(x) # Generate complex output
return x # Return the output tensor
class SyncANet(nn.Module):
"""
SyncANet: A synchronous audio processing network for separating audio signals.
This network integrates dense encoding, synchronous attention blocks,
and separate decoders for estimating masks and complex-valued outputs.
Args:
num_channel (int): The number of channels in the network (default is 64).
num_features (int): The number of features for the mask decoder (default is 201).
"""
def __init__(self, num_channel=64, num_features=201):
"""Initializes the SyncANet with specified parameters."""
super(SyncANet, self).__init__()
self.dense_encoder = DenseEncoder(in_channel=3, channels=num_channel) # Dense encoder for input
self.n_layers = 6 # Number of synchronous attention layers
self.blocks = nn.ModuleList([]) # List to hold attention blocks
# Initialize attention blocks
for _ in range(self.n_layers):
self.blocks.append(
SyncANetBlock(
emb_dim=num_channel,
emb_ks=2,
emb_hs=1,
n_freqs=int(num_features//2)+1,
hidden_channels=num_channel*2,
n_head=4,
approx_qk_dim=512,
activation='prelu',
eps=1.0e-5,
)
)
self.mask_decoder = MaskDecoder(num_features, num_channel=num_channel, out_channel=1) # Mask decoder
self.complex_decoder = ComplexDecoder(num_channel=num_channel) # Complex decoder
def forward(self, x):
"""
Defines the forward pass for the SyncANet.
Args:
x (torch.Tensor): Input tensor of shape [batch_size, 2, height, width] representing complex signals.
Returns:
list: List containing the real and imaginary parts of the output tensor.
"""
out_list = [] # List to store outputs
mag = torch.sqrt(x[:, 0, :, :]**2 + x[:, 1, :, :]**2).unsqueeze(1) # Calculate magnitude
noisy_phase = torch.angle(torch.complex(x[:, 0, :, :], x[:, 1, :, :])).unsqueeze(1) # Calculate phase
x_in = torch.cat([mag, x], dim=1) # Concatenate magnitude and input for processing
x = self.dense_encoder(x_in) # Feature extraction using dense encoder
for ii in range(self.n_layers):
x = self.blocks[ii](x) # Pass through attention blocks
mask = self.mask_decoder(x) # Estimate mask from features
out_mag = mask * mag # Apply mask to magnitude
complex_out = self.complex_decoder(x) # Generate complex output
mag_real = out_mag * torch.cos(noisy_phase) # Real part of the output
mag_imag = out_mag * torch.sin(noisy_phase) # Imaginary part of the output
final_real = mag_real + complex_out[:, 0, :, :].unsqueeze(1) # Final real output
final_imag = mag_imag + complex_out[:, 1, :, :].unsqueeze(1) # Final imaginary output
out_list.append(final_real) # Append real output to list
out_list.append(final_imag) # Append imaginary output to list
return out_list # Return list of outputs
class FFConvM(nn.Module):
"""
FFConvM: A feedforward convolutional module combining linear layers, normalization,
non-linear activation, and convolution operations.
This module processes input tensors through a sequence of transformations, including
normalization, a linear layer with a SiLU activation, a convolutional operation, and
dropout for regularization.
Args:
dim_in (int): The number of input features (dimensionality of input).
dim_out (int): The number of output features (dimensionality of output).
norm_klass (nn.Module): The normalization class to be applied (default is nn.LayerNorm).
dropout (float): The dropout probability for regularization (default is 0.1).
"""
def __init__(
self,
dim_in,
dim_out,
norm_klass=nn.LayerNorm,
dropout=0.1
):
"""Initializes the FFConvM with specified parameters."""
super().__init__()
# Define the sequential model
self.mdl = nn.Sequential(
norm_klass(dim_in), # Apply normalization to input
nn.Linear(dim_in, dim_out), # Linear transformation to dim_out
nn.SiLU(), # Non-linear activation using SiLU (Sigmoid Linear Unit)
ConvModule(dim_out), # Convolution operation on the output
nn.Dropout(dropout) # Dropout layer for regularization
)
def forward(self, x):
"""
Defines the forward pass for the FFConvM.
Args:
x (torch.Tensor): Input tensor of shape [batch_size, dim_in].
Returns:
torch.Tensor: Output tensor of shape [batch_size, dim_out] after processing.
"""
output = self.mdl(x) # Pass input through the sequential model
return output # Return the processed output
class SyncANetBlock(nn.Module):
"""
SyncANetBlock implements a modified version of the MossFormer (GatedFormer) module,
inspired by the TF-GridNet architecture (https://arxiv.org/abs/2211.12433).
It combines gated triple-attention schemes and Finite Short Memory Network (FSMN) modules
to enhance computational efficiency and overall performance in audio processing tasks.
Attributes:
emb_dim (int): Dimensionality of the embedding.
emb_ks (int): Kernel size for embeddings.
emb_hs (int): Stride size for embeddings.
n_freqs (int): Number of frequency bands.
hidden_channels (int): Number of hidden channels.
n_head (int): Number of attention heads.
approx_qk_dim (int): Approximate dimension for query-key matrices.
activation (str): Activation function to use.
eps (float): Small value to avoid division by zero in normalization layers.
"""
def __getitem__(self, key):
"""
Allows accessing module attributes using indexing.
Args:
key: Attribute name to retrieve.
Returns:
The requested attribute.
"""
return getattr(self, key)
def __init__(
self,
emb_dim,
emb_ks,
emb_hs,
n_freqs,
hidden_channels,
n_head=4,
approx_qk_dim=512,
activation="prelu",
eps=1e-5,
):
"""
Initializes the SyncANetBlock with the specified parameters.
Args:
emb_dim (int): Dimensionality of the embedding.
emb_ks (int): Kernel size for embeddings.
emb_hs (int): Stride size for embeddings.
n_freqs (int): Number of frequency bands.
hidden_channels (int): Number of hidden channels.
n_head (int): Number of attention heads. Default is 4.
approx_qk_dim (int): Approximate dimension for query-key matrices. Default is 512.
activation (str): Activation function to use. Default is "prelu".
eps (float): Small value to avoid division by zero in normalization layers. Default is 1e-5.
"""
super().__init__()
in_channels = emb_dim * emb_ks # Calculate the number of input channels
## Intra modules: Modules for internal processing within the block
self.Fconv = nn.Conv2d(emb_dim, in_channels, kernel_size=(1, emb_ks), stride=(1, 1), groups=emb_dim)
self.intra_norm = LayerNormalization4D(emb_dim, eps=eps) # Layer normalization
self.intra_to_u = FFConvM(
dim_in=in_channels,
dim_out=hidden_channels,
norm_klass=nn.LayerNorm,
dropout=0.1,
)
self.intra_to_v = FFConvM(
dim_in=in_channels,
dim_out=hidden_channels,
norm_klass=nn.LayerNorm,
dropout=0.1,
)
self.intra_rnn = self._build_repeats(in_channels, hidden_channels, 20, hidden_channels, repeats=1) # FSMN layers
self.intra_mossformer = MossFormer(dim=emb_dim, group_size=n_freqs) # MossFormer module
# Linear transformation for intra module output
self.intra_linear = nn.ConvTranspose1d(
hidden_channels, emb_dim, emb_ks, stride=emb_hs
)
self.intra_se = SELayer(channel=emb_dim, reduction=1) # Squeeze-and-excitation layer
## Inter modules: Modules for external processing between blocks
self.inter_norm = LayerNormalization4D(emb_dim, eps=eps) # Layer normalization
self.inter_to_u = FFConvM(
dim_in=in_channels,
dim_out=hidden_channels,
norm_klass=nn.LayerNorm,
dropout=0.1,
)
self.inter_to_v = FFConvM(
dim_in=in_channels,
dim_out=hidden_channels,
norm_klass=nn.LayerNorm,
dropout=0.1,
)
self.inter_rnn = self._build_repeats(in_channels, hidden_channels, 20, hidden_channels, repeats=1) # FSMN layers
self.inter_mossformer = MossFormer(dim=emb_dim, group_size=256) # MossFormer module
# Linear transformation for inter module output
self.inter_linear = nn.ConvTranspose1d(
hidden_channels, emb_dim, emb_ks, stride=emb_hs
)
self.inter_se = SELayer(channel=emb_dim, reduction=1) # Squeeze-and-excitation layer
# Approximate query-key dimension calculation
E = math.ceil(approx_qk_dim * 1.0 / n_freqs)
assert emb_dim % n_head == 0 # Ensure emb_dim is divisible by n_head
# Define attention convolution layers for each head
for ii in range(n_head):
self.add_module(
f"attn_conv_Q_{ii}",
nn.Sequential(
nn.Conv2d(emb_dim, E, 1),
get_layer(activation)(),
LayerNormalization4DCF((E, n_freqs), eps=eps),
),
)
self.add_module(
f"attn_conv_K_{ii}",
nn.Sequential(
nn.Conv2d(emb_dim, E, 1),
get_layer(activation)(),
LayerNormalization4DCF((E, n_freqs), eps=eps),
),
)
self.add_module(
f"attn_conv_V_{ii}",
nn.Sequential(
nn.Conv2d(emb_dim, emb_dim // n_head, 1),
get_layer(activation)(),
LayerNormalization4DCF((emb_dim // n_head, n_freqs), eps=eps),
),
)
# Final attention concatenation projection
self.add_module(
"attn_concat_proj",
nn.Sequential(
nn.Conv2d(emb_dim, emb_dim, 1),
get_layer(activation)(),
LayerNormalization4DCF((emb_dim, n_freqs), eps=eps),
),
)
# Store parameters for further processing
self.emb_dim = emb_dim
self.emb_ks = emb_ks
self.emb_hs = emb_hs
self.n_head = n_head
def _build_repeats(self, in_channels, out_channels, lorder, hidden_size, repeats=1):
"""
Constructs a sequence of UniDeepFSMN modules.
Args:
in_channels (int): Number of input channels.
out_channels (int): Number of output channels.
lorder (int): Order of the filter.
hidden_size (int): Hidden size for the FSMN.
repeats (int): Number of times to repeat the module. Default is 1.
Returns:
nn.Sequential: A sequence of UniDeepFSMN modules.
"""
repeats = [
UniDeepFsmn(in_channels, out_channels, lorder, hidden_size)
for _ in range(repeats)
]
return nn.Sequential(*repeats)
def forward(self, x):
"""Performs a forward pass through the SyncANetBlock.
Args:
x (torch.Tensor): Input tensor of shape [B, C, T, Q] where
B is batch size, C is number of channels,
T is temporal dimension, and Q is frequency dimension.
Returns:
torch.Tensor: Output tensor of the same shape [B, C, T, Q].
"""
B, C, old_T, old_Q = x.shape
# Calculate new dimensions for padding
T = math.ceil((old_T - self.emb_ks) / self.emb_hs) * self.emb_hs + self.emb_ks
Q = math.ceil((old_Q - self.emb_ks) / self.emb_hs) * self.emb_hs + self.emb_ks
# Pad the input tensor to match the new dimensions
x = F.pad(x, (0, Q - old_Q, 0, T - old_T))
# Intra-process
input_ = x
intra_rnn = self.intra_norm(input_) # Normalize input for intra-process
intra_rnn = self.Fconv(intra_rnn) # Apply depthwise convolution
intra_rnn = (
intra_rnn.transpose(1, 2).contiguous().view(B * T, C * self.emb_ks, -1)
) # Reshape for subsequent operations
intra_rnn = intra_rnn.transpose(1, 2) # Reshape for processing
intra_rnn_u = self.intra_to_u(intra_rnn) # Linear transformation
intra_rnn_v = self.intra_to_v(intra_rnn) # Linear transformation
intra_rnn_u = self.intra_rnn(intra_rnn_u) # Apply FSMN
intra_rnn = intra_rnn_v * intra_rnn_u # Element-wise multiplication
intra_rnn = intra_rnn.transpose(1, 2) # Reshape back
intra_rnn = self.intra_linear(intra_rnn) # Linear projection
intra_rnn = intra_rnn.transpose(1, 2) # Reshape for mossformer
intra_rnn = intra_rnn.view([B, T, Q, C]) # Reshape for mossformer
intra_rnn = self.intra_mossformer(intra_rnn) # Apply MossFormer
intra_rnn = intra_rnn.transpose(1, 2) # Reshape back
intra_rnn = intra_rnn.view([B, T, C, Q]) # Reshape back
intra_rnn = intra_rnn.transpose(1, 2).contiguous() # Final reshape
intra_rnn = self.intra_se(intra_rnn) # Squeeze-and-excitation layer
intra_rnn = intra_rnn + input_ # Residual connection
# Inter-process
input_ = intra_rnn
inter_rnn = self.inter_norm(input_) # Normalize input for inter-process
inter_rnn = (
inter_rnn.permute(0, 3, 1, 2).contiguous().view(B * Q, C, T)
) # Reshape for processing
inter_rnn = F.unfold(
inter_rnn[..., None], (self.emb_ks, 1), stride=(self.emb_hs, 1)
) # Extract sliding windows
inter_rnn = inter_rnn.transpose(1, 2) # Reshape for further processing
inter_rnn_u = self.inter_to_u(inter_rnn) # Linear transformation
inter_rnn_v = self.inter_to_v(inter_rnn) # Linear transformation
inter_rnn_u = self.inter_rnn(inter_rnn_u) # Apply FSMN
inter_rnn = inter_rnn_v * inter_rnn_u # Element-wise multiplication
inter_rnn = inter_rnn.transpose(1, 2) # Reshape back
inter_rnn = self.inter_linear(inter_rnn) # Linear projection
inter_rnn = inter_rnn.transpose(1, 2) # Reshape for mossformer
inter_rnn = inter_rnn.view([B, Q, T, C]) # Reshape for mossformer
inter_rnn = self.inter_mossformer(inter_rnn) # Apply MossFormer
inter_rnn = inter_rnn.transpose(1, 2) # Reshape back
inter_rnn = inter_rnn.view([B, Q, C, T]) # Final reshape
inter_rnn = inter_rnn.permute(0, 2, 3, 1).contiguous() # Permute for SE layer
inter_rnn = self.inter_se(inter_rnn) # Squeeze-and-excitation layer
inter_rnn = inter_rnn + input_ # Residual connection
# Attention mechanism
inter_rnn = inter_rnn[..., :old_T, :old_Q] # Trim to original shape
batch = inter_rnn
all_Q, all_K, all_V = [], [], []
# Compute query, key, and value for each attention head
for ii in range(self.n_head):
all_Q.append(self["attn_conv_Q_%d" % ii](batch)) # Query
all_K.append(self["attn_conv_K_%d" % ii](batch)) # Key
all_V.append(self["attn_conv_V_%d" % ii](batch)) # Value
Q = torch.cat(all_Q, dim=0) # Concatenate all queries
K = torch.cat(all_K, dim=0) # Concatenate all keys
V = torch.cat(all_V, dim=0) # Concatenate all values
# Reshape for attention calculation
Q = Q.transpose(1, 2)
Q = Q.flatten(start_dim=2) # Flatten for attention calculation
K = K.transpose(1, 2)
K = K.flatten(start_dim=2) # Flatten for attention calculation
V = V.transpose(1, 2) # Reshape for attention calculation
old_shape = V.shape
V = V.flatten(start_dim=2) # Flatten for attention calculation
emb_dim = Q.shape[-1]
# Compute scaled dot-product attention
attn_mat = torch.matmul(Q, K.transpose(1, 2)) / (emb_dim**0.5) # Attention matrix
attn_mat = F.softmax(attn_mat, dim=2) # Softmax over attention scores
V = torch.matmul(attn_mat, V) # Weighted sum of values
V = V.reshape(old_shape) # Reshape back
V = V.transpose(1, 2) # Final reshaping
emb_dim = V.shape[1]
batch = V.view([self.n_head, B, emb_dim, old_T, -1]) # Reshape for multi-head
batch = batch.transpose(0, 1) # Permute for batch processing
batch = batch.contiguous().view(
[B, self.n_head * emb_dim, old_T, -1]
) # Final reshape for concatenation
batch = self["attn_concat_proj"](batch) # Final linear projection
# Combine inter-process result with attention output
out = batch + inter_rnn
return out # Return the output tensor
class LayerNormalization4D(nn.Module):
"""
LayerNormalization4D applies layer normalization to 4D tensors
(e.g., [B, C, T, F]), where B is the batch size, C is the number of channels,
T is the temporal dimension, and F is the frequency dimension.
Attributes:
gamma (torch.Parameter): Learnable scaling parameter.
beta (torch.Parameter): Learnable shifting parameter.
eps (float): Small value for numerical stability during variance calculation.
"""
def __init__(self, input_dimension, eps=1e-5):
"""
Initializes the LayerNormalization4D layer.
Args:
input_dimension (int): The number of channels in the input tensor.
eps (float, optional): Small constant added for numerical stability.
"""
super().__init__()
param_size = [1, input_dimension, 1, 1]
self.gamma = Parameter(torch.Tensor(*param_size).to(torch.float32)) # Scale parameter
self.beta = Parameter(torch.Tensor(*param_size).to(torch.float32)) # Shift parameter
init.ones_(self.gamma) # Initialize gamma to 1
init.zeros_(self.beta) # Initialize beta to 0
self.eps = eps # Set the epsilon value
def forward(self, x):
"""
Forward pass for the layer normalization.
Args:
x (torch.Tensor): Input tensor of shape [B, C, T, F].
Returns:
torch.Tensor: Normalized output tensor of the same shape.
"""
if x.ndim == 4:
_, C, _, _ = x.shape # Extract the number of channels
stat_dim = (1,) # Dimension to compute statistics over
else:
raise ValueError("Expect x to have 4 dimensions, but got {}".format(x.ndim))
# Compute mean and standard deviation along the specified dimension
mu_ = x.mean(dim=stat_dim, keepdim=True) # [B, 1, T, F]
std_ = torch.sqrt(
x.var(dim=stat_dim, unbiased=False, keepdim=True) + self.eps
) # [B, 1, T, F]
# Normalize the input tensor and apply learnable parameters
x_hat = ((x - mu_) / std_) * self.gamma + self.beta # [B, C, T, F]
return x_hat
class LayerNormalization4DCF(nn.Module):
"""
LayerNormalization4DCF applies layer normalization to 4D tensors
(e.g., [B, C, T, F]) specifically designed for DCF (Dynamic Channel Frequency) inputs.
Attributes:
gamma (torch.Parameter): Learnable scaling parameter.
beta (torch.Parameter): Learnable shifting parameter.
eps (float): Small value for numerical stability during variance calculation.
"""
def __init__(self, input_dimension, eps=1e-5):
"""
Initializes the LayerNormalization4DCF layer.
Args:
input_dimension (tuple): A tuple containing the dimensions of the input tensor
(number of channels, frequency dimension).
eps (float, optional): Small constant added for numerical stability.
"""
super().__init__()
assert len(input_dimension) == 2, "Input dimension must be a tuple of length 2."
param_size = [1, input_dimension[0], 1, input_dimension[1]] # Shape based on input dimensions
self.gamma = Parameter(torch.Tensor(*param_size).to(torch.float32)) # Scale parameter
self.beta = Parameter(torch.Tensor(*param_size).to(torch.float32)) # Shift parameter
init.ones_(self.gamma) # Initialize gamma to 1
init.zeros_(self.beta) # Initialize beta to 0
self.eps = eps # Set the epsilon value
def forward(self, x):
"""
Forward pass for the layer normalization.
Args:
x (torch.Tensor): Input tensor of shape [B, C, T, F].
Returns:
torch.Tensor: Normalized output tensor of the same shape.
"""
if x.ndim == 4:
stat_dim = (1, 3) # Dimensions to compute statistics over
else:
raise ValueError("Expect x to have 4 dimensions, but got {}".format(x.ndim))
# Compute mean and standard deviation along the specified dimensions
mu_ = x.mean(dim=stat_dim, keepdim=True) # [B, 1, T, 1]
std_ = torch.sqrt(
x.var(dim=stat_dim, unbiased=False, keepdim=True) + self.eps
) # [B, 1, T, F]
# Normalize the input tensor and apply learnable parameters
x_hat = ((x - mu_) / std_) * self.gamma + self.beta # [B, C, T, F]
return x_hat