File size: 6,309 Bytes
8e8cd3e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
import torch
from torch import nn, einsum
import torch.nn.functional as F

from einops import rearrange
from einops.layers.torch import Rearrange

# source: https://github.com/lucidrains/conformer/blob/master/conformer/conformer.py
# helper functions


def exists(val):
    return val is not None


def default(val, d):
    return val if exists(val) else d


def calc_same_padding(kernel_size):
    pad = kernel_size // 2
    return (pad, pad - (kernel_size + 1) % 2)


class Swish(nn.Module):
    def forward(self, x):
        return x * x.sigmoid()


class GLU(nn.Module):
    def __init__(self, dim):
        super().__init__()
        self.dim = dim

    def forward(self, x):
        out, gate = x.chunk(2, dim=self.dim)
        return out * gate.sigmoid()


class DepthWiseConv1d(nn.Module):
    def __init__(self, chan_in, chan_out, kernel_size, padding):
        super().__init__()
        self.padding = padding
        self.conv = nn.Conv1d(chan_in, chan_out, kernel_size, groups = chan_in)

    def forward(self, x):
        x = F.pad(x, self.padding)
        return self.conv(x)

# attention, feedforward, and conv module


class Scale(nn.Module):
    def __init__(self, scale, fn):
        super().__init__()
        self.fn = fn
        self.scale = scale

    def forward(self, x, **kwargs):
        return self.fn(x, **kwargs) * self.scale


class PreNorm(nn.Module):
    def __init__(self, dim, fn):
        super().__init__()
        self.fn = fn
        self.norm = nn.LayerNorm(dim)

    def forward(self, x, **kwargs):
        x = self.norm(x)
        return self.fn(x, **kwargs)


class Attention(nn.Module):
    def __init__(
        self,
        dim,
        heads = 8,
        dim_head = 64,
        dropout = 0.,
        max_pos_emb = 512
    ):
        super().__init__()
        inner_dim = dim_head * heads
        self.heads= heads
        self.scale = dim_head ** -0.5
        self.to_q = nn.Linear(dim, inner_dim, bias = False)
        self.to_kv = nn.Linear(dim, inner_dim * 2, bias = False)
        self.to_out = nn.Linear(inner_dim, dim)

        self.max_pos_emb = max_pos_emb
        self.rel_pos_emb = nn.Embedding(2 * max_pos_emb + 1, dim_head)

        self.dropout = nn.Dropout(dropout)

    def forward(self, x, context = None, mask = None, context_mask = None):
        n, device, h, max_pos_emb, has_context = x.shape[-2], x.device, self.heads, self.max_pos_emb, exists(context)
        context = default(context, x)

        q, k, v = (self.to_q(x), *self.to_kv(context).chunk(2, dim = -1))
        q, k, v = map(lambda t: rearrange(t, 'b n (h d) -> b h n d', h = h), (q, k, v))

        dots = einsum('b h i d, b h j d -> b h i j', q, k) * self.scale

        # shaw's relative positional embedding
        seq = torch.arange(n, device = device)
        dist = rearrange(seq, 'i -> i ()') - rearrange(seq, 'j -> () j')
        dist = dist.clamp(-max_pos_emb, max_pos_emb) + max_pos_emb
        rel_pos_emb = self.rel_pos_emb(dist).to(q)
        pos_attn = einsum('b h n d, n r d -> b h n r', q, rel_pos_emb) * self.scale
        dots = dots + pos_attn

        if exists(mask) or exists(context_mask):
            mask = default(mask, lambda: torch.ones(*x.shape[:2], device = device))
            context_mask = default(context_mask, mask) if not has_context else default(context_mask, lambda: torch.ones(*context.shape[:2], device = device))
            mask_value = -torch.finfo(dots.dtype).max
            mask = rearrange(mask, 'b i -> b () i ()') * rearrange(context_mask, 'b j -> b () () j')
            dots.masked_fill_(~mask, mask_value)

        attn = dots.softmax(dim = -1)

        out = einsum('b h i j, b h j d -> b h i d', attn, v)
        out = rearrange(out, 'b h n d -> b n (h d)')
        out = self.to_out(out)
        return self.dropout(out)


class FeedForward(nn.Module):
    def __init__(
        self,
        dim,
        mult = 4,
        dropout = 0.
    ):
        super().__init__()
        self.net = nn.Sequential(
            nn.Linear(dim, dim * mult),
            Swish(),
            nn.Dropout(dropout),
            nn.Linear(dim * mult, dim),
            nn.Dropout(dropout)
        )

    def forward(self, x):
        return self.net(x)


class ConformerConvModule(nn.Module):
    def __init__(
        self,
        dim,
        causal = False,
        expansion_factor = 2,
        kernel_size = 31,
        dropout = 0.):
        super().__init__()

        inner_dim = dim * expansion_factor
        padding = calc_same_padding(kernel_size) if not causal else (kernel_size - 1, 0)

        self.net = nn.Sequential(
            nn.LayerNorm(dim),
            Rearrange('b n c -> b c n'),
            nn.Conv1d(dim, inner_dim * 2, 1),
            GLU(dim=1),
            DepthWiseConv1d(inner_dim, inner_dim, kernel_size = kernel_size, padding = padding),
            nn.BatchNorm1d(inner_dim) if not causal else nn.Identity(),
            Swish(),
            nn.Conv1d(inner_dim, dim, 1),
            Rearrange('b c n -> b n c'),
            nn.Dropout(dropout)
        )

    def forward(self, x):
        return self.net(x)

# Conformer Block


class ConformerBlock(nn.Module):
    def __init__(
        self,
        *,
        dim,
        dim_head = 64,
        heads = 8,
        ff_mult = 4,
        conv_expansion_factor = 2,
        conv_kernel_size = 31,
        attn_dropout = 0.,
        ff_dropout = 0.,
        conv_dropout = 0.
    ):
        super().__init__()
        self.ff1 = FeedForward(dim = dim, mult = ff_mult, dropout = ff_dropout)
        self.attn = Attention(dim = dim, dim_head = dim_head, heads = heads, dropout = attn_dropout)
        self.conv = ConformerConvModule(dim = dim, causal = False, expansion_factor = conv_expansion_factor, kernel_size = conv_kernel_size, dropout = conv_dropout)
        self.ff2 = FeedForward(dim = dim, mult = ff_mult, dropout = ff_dropout)

        self.attn = PreNorm(dim, self.attn)
        self.ff1 = Scale(0.5, PreNorm(dim, self.ff1))
        self.ff2 = Scale(0.5, PreNorm(dim, self.ff2))

        self.post_norm = nn.LayerNorm(dim)

    def forward(self, x, mask = None):
        x = self.ff1(x) + x
        x = self.attn(x, mask = mask) + x
        x = self.conv(x) + x
        x = self.ff2(x) + x
        x = self.post_norm(x)
        return x