Spaces:
Running
on
Zero
Running
on
Zero
File size: 4,607 Bytes
02c7bdf bdaf47a 02c7bdf 7b02833 02c7bdf e537531 e63a812 fef598a e63a812 a9e592e 132a2a9 e63a812 02c7bdf 3192961 e537531 b78b7d0 4554491 b78b7d0 4554491 b78b7d0 3192961 3956066 b78b7d0 e805751 e63a812 fef598a e63a812 b78b7d0 e805751 b78b7d0 e63a812 6963e61 b78b7d0 ed890e5 b78b7d0 8bb6908 3956066 e805751 3956066 e805751 3956066 b78b7d0 e63a812 6963e61 3956066 6320c59 d04ae35 3956066 b78b7d0 99710ec 6963e61 49effbd 0f8dddd |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 |
import torch
import soundfile as sf
import gradio as gr
import spaces
from clearvoice import ClearVoice
@spaces.GPU
def fn_clearvoice_se(input_wav, sr):
if sr == "16000":
myClearVoice = ClearVoice(task='speech_enhancement', model_names=['FRCRN_SE_16K'])
fs = 16000
else:
myClearVoice = ClearVoice(task='speech_enhancement', model_names=['MossFormer2_SE_48K'])
fs = 48000
output_wav_dict = myClearVoice(input_path=input_wav, online_write=False)
if isinstance(output_wav_dict, dict):
key = next(iter(output_wav_dict))
output_wav = output_wav_dict[key]
else:
output_wav = output_wav_dict
sf.write('enhanced.wav', output_wav, fs)
return 'enhanced.wav'
@spaces.GPU
def fn_clearvoice_ss(input_wav):
myClearVoice = ClearVoice(task='speech_separation', model_names=['MossFormer2_SS_16K'])
output_wav_dict = myClearVoice(input_path=input_wav, online_write=False)
if isinstance(output_wav_dict, dict):
key = next(iter(output_wav_dict))
output_wav_list = output_wav_dict[key]
output_wav_s1 = output_wav_list[0]
output_wav_s2 = output_wav_list[1]
else:
output_wav_list = output_wav_dict
output_wav_s1 = output_wav_list[0]
output_wav_s2 = output_wav_list[1]
sf.write('separated_s1.wav', output_wav_s1, 16000)
sf.write('separated_s2.wav', output_wav_s2, 16000)
return "separated_s1.wav", "separated_s2.wav"
demo = gr.Blocks()
se_demo = gr.Interface(
fn=fn_clearvoice_se,
inputs = [
gr.Audio(label="Input Audio", type="filepath"),
gr.Dropdown(
["16000", "48000"], value=["16000"], multiselect=False, label="Sampling Rate", info="Choose the sampling rate for your output."
),
],
outputs = [
gr.Audio(label="Output Audio", type="filepath"),
],
title = "ClearVoice: Speech Enhancement",
description = ("Gradio demo for Speech enhancement with ClearVoice. The models support audios with 16 kHz (FRCRN backbone) and 48 kHz (MossFormer2 backbone) sampling rates. "
"We provide the generalized models trained on large scale of data for handling various of background environments. "
"To test it, simply upload your audio, or click one of the examples to load them. Read more at the links below."),
article = ("<p style='text-align: center'><a href='https://arxiv.org/abs/2206.07293' target='_blank'>FRCRN: Boosting Feature Representation Using Frequency Recurrence for Monaural Speech Enhancement</a> | <a href='https://github.com/alibabasglab/FRCRN' target='_blank'>Github Repo</a></p>"
),
examples = [
["examples/mandarin_speech_16kHz.wav", "16000"],
["examples/english_speech_48kHz.wav", "48000"],
],
cache_examples = True,
)
ss_demo = gr.Interface(
fn=fn_clearvoice_ss,
inputs = [
gr.Audio(label="Input Audio", type="filepath"),
],
outputs = [
gr.Audio(label="Output Audio", type="filepath"),
gr.Audio(label="Output Audio", type="filepath"),
],
title = "ClearVoice: Speech Separation",
description = ("Gradio demo for Speech separation with ClearVoice. The model (MossFormer2 backbone) supports 2 speakers' audio mixtures with 16 kHz sampling rate. "
"We provide the generalized models trained on large scale of data for handling independent speakers and various of background environments. "
"To test it, simply upload your audio, or click one of the examples to load them. Read more at the links below."),
article = ("<p style='text-align: center'><a href='https://arxiv.org/abs/2302.11824' target='_blank'>MossFormer: Pushing the Performance Limit of Monaural Speech Separation using Gated Single-Head Transformer with Convolution-Augmented Joint Self-Attentions</a> | <a href='https://github.com/alibabasglab/MossFormer' target='_blank'>Github Repo</a></p>"
"<p style='text-align: center'><a href='https://arxiv.org/abs/2312.11825' target='_blank'>MossFormer2: Combining Transformer and RNN-Free Recurrent Network for Enhanced Time-Domain Monaural Speech Separation</a> | <a href='https://github.com/alibabasglab/MossFormer2' target='_blank'>Github Repo</a></p>"),
examples = [
['examples/female_female_speech.wav'],
['examples/female_male_speech.wav'],
],
cache_examples = True,
)
with demo:
#gr.TabbedInterface([se_demo], ["Speech Enhancement"])
gr.TabbedInterface([se_demo, ss_demo], ["Speech Enhancement", "Speech Separation"])
demo.launch() |