File size: 19,162 Bytes
8e8cd3e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
import numpy as np
import math, os, csv
import torchaudio
import torch
import torch.nn as nn
import torch.utils.data as data
import torch.distributed as dist
import soundfile as sf
from torch.utils.data import Dataset
import torch.utils.data as data
import os 
import sys
sys.path.append(os.path.dirname(__file__))

from dataloader.misc import read_and_config_file
import librosa
import random
EPS = 1e-6
MAX_WAV_VALUE = 32768.0

def audioread(path, sampling_rate):
    """
    Reads an audio file from the specified path, normalizes the audio, 
    resamples it to the desired sampling rate (if necessary), and ensures it is single-channel.

    Parameters:
    path (str): The file path of the audio file to be read.
    sampling_rate (int): The target sampling rate for the audio.

    Returns:
    numpy.ndarray: The processed audio data, normalized, resampled (if necessary),
                   and converted to mono (if the input audio has multiple channels).
    """
    
    # Read audio data and its sample rate from the file.
    data, fs = sf.read(path)
    
    # Normalize the audio data.
    data = audio_norm(data)
    
    # Resample the audio if the sample rate is different from the target sampling rate.
    if fs != sampling_rate:
        data = librosa.resample(data, orig_sr=fs, target_sr=sampling_rate)
    
    # Convert to mono by selecting the first channel if the audio has multiple channels.
    if len(data.shape) > 1:
        data = data[:, 0]
    
    # Return the processed audio data.
    return data

def audio_norm(x):
    """
    Normalizes the input audio signal to a target Root Mean Square (RMS) level, 
    applying two stages of scaling. This ensures the audio signal is neither too quiet 
    nor too loud, keeping its amplitude consistent.

    Parameters:
    x (numpy.ndarray): Input audio signal to be normalized.

    Returns:
    numpy.ndarray: Normalized audio signal.
    """
    
    # Compute the root mean square (RMS) of the input audio signal.
    rms = (x ** 2).mean() ** 0.5
    
    # Calculate the scalar to adjust the signal to the target level (-25 dB).
    scalar = 10 ** (-25 / 20) / (rms + EPS)
    
    # Scale the input audio by the computed scalar.
    x = x * scalar
    
    # Compute the power of the scaled audio signal.
    pow_x = x ** 2
    
    # Calculate the average power of the audio signal.
    avg_pow_x = pow_x.mean()
    
    # Compute RMS only for audio segments with higher-than-average power.
    rmsx = pow_x[pow_x > avg_pow_x].mean() ** 0.5
    
    # Calculate another scalar to further normalize based on higher-power segments.
    scalarx = 10 ** (-25 / 20) / (rmsx + EPS)
    
    # Apply the second scalar to the audio.
    x = x * scalarx
    
    # Return the doubly normalized audio signal.
    return x

class DataReader(object):
    """
    A class for reading audio data from a list of files, normalizing it, 
    and extracting features for further processing. It supports extracting 
    features from each file, reshaping the data, and returning metadata 
    like utterance ID and data length.

    Parameters:
    args: Arguments containing the input path and target sampling rate.

    Attributes:
    file_list (list): A list of audio file paths to process.
    sampling_rate (int): The target sampling rate for audio files.
    """

    def __init__(self, args):
        # Read and configure the file list from the input path provided in the arguments.
        # The file list is decoded, if necessary.
        self.file_list = read_and_config_file(args, args.input_path, decode=True)
        
        # Store the target sampling rate.
        self.sampling_rate = args.sampling_rate

        # Store the args file
        self.args = args

    def __len__(self):
        """
        Returns the number of audio files in the file list.

        Returns:
        int: Number of files to process.
        """
        return len(self.file_list)

    def __getitem__(self, index):
        """
        Retrieves the features of the audio file at the given index.

        Parameters:
        index (int): Index of the file in the file list.

        Returns:
        tuple: Features (inputs, utterance ID, data length) for the selected audio file.
        """
        if self.args.task == 'target_speaker_extraction':
            if self.args.network_reference.cue== 'lip':
                return self.file_list[index]
        return self.extract_feature(self.file_list[index])

    def extract_feature(self, path):
        """
        Extracts features from the given audio file path.

        Parameters:
        path (str): The file path of the audio file.

        Returns:
        inputs (numpy.ndarray): Reshaped audio data for further processing.
        utt_id (str): The unique identifier of the audio file, usually the filename.
        length (int): The length of the original audio data.
        """
        # Extract the utterance ID from the file path (usually the filename).
        utt_id = path.split('/')[-1]
        
        # Read and normalize the audio data, converting it to float32 for processing.
        data = audioread(path, self.sampling_rate).astype(np.float32)
        
        # Reshape the data to ensure it's in the format [1, data_length].
        inputs = np.reshape(data, [1, data.shape[0]])
        
        # Return the reshaped audio data, utterance ID, and the length of the original data.
        return inputs, utt_id, data.shape[0]

class Wave_Processor(object):
    """
    A class for processing audio data, specifically for reading input and label audio files,
    segmenting them into fixed-length segments, and applying padding or trimming as necessary.

    Methods:
    process(path, segment_length, sampling_rate):
        Processes audio data by reading, padding, or segmenting it to match the specified segment length.
    
    Parameters:
    path (dict): A dictionary containing file paths for 'inputs' and 'labels' audio files.
    segment_length (int): The desired length of audio segments to extract.
    sampling_rate (int): The target sampling rate for reading the audio files.
    """

    def process(self, path, segment_length, sampling_rate):
        """
        Reads input and label audio files, and ensures the audio is segmented into
        the desired length, padding if necessary or extracting random segments if
        the audio is longer than the target segment length.

        Parameters:
        path (dict): Dictionary containing the paths to 'inputs' and 'labels' audio files.
        segment_length (int): Desired length of the audio segment in samples.
        sampling_rate (int): Target sample rate for the audio.

        Returns:
        tuple: A pair of numpy arrays representing the processed input and label audio,
               either padded to the segment length or trimmed.
        """
        # Read the input and label audio files using the target sampling rate.
        wave_inputs = audioread(path['inputs'], sampling_rate)
        wave_labels = audioread(path['labels'], sampling_rate)
        
        # Get the length of the label audio (assumed both inputs and labels have similar lengths).
        len_wav = wave_labels.shape[0]
        
        # If the input audio is shorter than the desired segment length, pad it with zeros.
        if wave_inputs.shape[0] < segment_length:
            # Create zero-padded arrays for inputs and labels.
            padded_inputs = np.zeros(segment_length, dtype=np.float32)
            padded_labels = np.zeros(segment_length, dtype=np.float32)
            
            # Copy the original audio into the padded arrays.
            padded_inputs[:wave_inputs.shape[0]] = wave_inputs
            padded_labels[:wave_labels.shape[0]] = wave_labels
        else:
            # Randomly select a start index for segmenting the audio if it's longer than the segment length.
            st_idx = random.randint(0, len_wav - segment_length)
            
            # Extract a segment of the desired length from the inputs and labels.
            padded_inputs = wave_inputs[st_idx:st_idx + segment_length]
            padded_labels = wave_labels[st_idx:st_idx + segment_length]
        
        # Return the processed (padded or segmented) input and label audio.
        return padded_inputs, padded_labels

class Fbank_Processor(object):
    """
    A class for processing input audio data into mel-filterbank (Fbank) features, 
    including the computation of delta and delta-delta features.
    
    Methods:
    process(inputs, args):
        Processes the raw audio input and returns the mel-filterbank features 
        along with delta and delta-delta features.
    """
    
    def process(self, inputs, args):
        # Convert frame length and shift from seconds to milliseconds.
        frame_length = int(args.win_len / args.sampling_rate * 1000)
        frame_shift = int(args.win_inc / args.sampling_rate * 1000)

        # Set up configuration for the mel-filterbank computation.
        fbank_config = {
            "dither": 1.0,
            "frame_length": frame_length,
            "frame_shift": frame_shift,
            "num_mel_bins": args.num_mels,
            "sample_frequency": args.sampling_rate,
            "window_type": args.win_type
        }

        # Convert the input audio to a FloatTensor and scale it to match the expected input range.
        inputs = torch.FloatTensor(inputs * MAX_WAV_VALUE)

        # Compute the mel-filterbank features using Kaldi's fbank function.
        fbank = torchaudio.compliance.kaldi.fbank(inputs.unsqueeze(0), **fbank_config)

        # Add delta and delta-delta features.
        fbank_tr = torch.transpose(fbank, 0, 1)
        fbank_delta = torchaudio.functional.compute_deltas(fbank_tr)
        fbank_delta_delta = torchaudio.functional.compute_deltas(fbank_delta)
        fbank_delta = torch.transpose(fbank_delta, 0, 1)
        fbank_delta_delta = torch.transpose(fbank_delta_delta, 0, 1)
        
        # Concatenate the original Fbank, delta, and delta-delta features.
        fbanks = torch.cat([fbank, fbank_delta, fbank_delta_delta], dim=1)
        
        return fbanks.numpy()

class AudioDataset(Dataset):
    """
    A dataset class for loading and processing audio data from different data types 
    (train, validation, test). Supports audio processing and feature extraction 
    (e.g., waveform processing, Fbank feature extraction).

    Parameters:
    args: Arguments containing dataset configuration (paths, sampling rate, etc.).
    data_type (str): The type of data to load (train, val, test).
    """

    def __init__(self, args, data_type):
        self.args = args
        self.sampling_rate = args.sampling_rate
        
        # Read the list of audio files based on the data type.
        if data_type == 'train':
            self.wav_list = read_and_config_file(args.tr_list)
        elif data_type == 'val':
            self.wav_list = read_and_config_file(args.cv_list)
        elif data_type == 'test':
            self.wav_list = read_and_config_file(args.tt_list)
        else:
            print(f'Data type: {data_type} is unknown!')
        
        # Initialize processors for waveform and Fbank features.
        self.wav_processor = Wave_Processor()
        self.fbank_processor = Fbank_Processor()
        
        # Clip data to a fixed segment length based on the sampling rate and max length.
        self.segment_length = self.sampling_rate * self.args.max_length
        print(f'No. {data_type} files: {len(self.wav_list)}')

    def __len__(self):
        # Return the number of audio files in the dataset.
        return len(self.wav_list)

    def __getitem__(self, index):
        # Get the input and label paths from the list.
        data_info = self.wav_list[index]
        
        # Process the waveform inputs and labels.
        inputs, labels = self.wav_processor.process(
            {'inputs': data_info['inputs'], 'labels': data_info['labels']}, 
            self.segment_length, 
            self.sampling_rate
        )
        
        # Optionally load Fbank features if specified.
        if self.args.load_fbank is not None:
            fbanks = self.fbank_processor.process(inputs, self.args)
            return inputs * MAX_WAV_VALUE, labels * MAX_WAV_VALUE, fbanks
        
        return inputs, labels

def zero_pad_concat(self, inputs):
    """
    Concatenates a list of input arrays, applying zero-padding as needed to ensure 
    they all match the length of the longest input.

    Parameters:
    inputs (list of numpy arrays): List of input arrays to be concatenated.

    Returns:
    numpy.ndarray: A zero-padded array with concatenated inputs.
    """
    
    # Get the maximum length among all inputs.
    max_t = max(inp.shape[0] for inp in inputs)
    
    # Determine the shape of the output based on the input dimensions.
    shape = None
    if len(inputs[0].shape) == 1:
        shape = (len(inputs), max_t)
    elif len(inputs[0].shape) == 2:
        shape = (len(inputs), max_t, inputs[0].shape[1])
    
    # Initialize an array with zeros to hold the concatenated inputs.
    input_mat = np.zeros(shape, dtype=np.float32)
    
    # Copy the input data into the zero-padded array.
    for e, inp in enumerate(inputs):
        if len(inp.shape) == 1:
            input_mat[e, :inp.shape[0]] = inp
        elif len(inp.shape) == 2:
            input_mat[e, :inp.shape[0], :] = inp
    
    return input_mat

def collate_fn_2x_wavs(data):
    """
    A custom collate function for combining batches of waveform input and label pairs.

    Parameters:
    data (list): List of tuples (inputs, labels).

    Returns:
    tuple: Batched inputs and labels as torch.FloatTensors.
    """
    inputs, labels = zip(*data)
    x = torch.FloatTensor(inputs)
    y = torch.FloatTensor(labels)
    return x, y

def collate_fn_2x_wavs_fbank(data):
    """
    A custom collate function for combining batches of waveform inputs, labels, and Fbank features.

    Parameters:
    data (list): List of tuples (inputs, labels, fbanks).

    Returns:
    tuple: Batched inputs, labels, and Fbank features as torch.FloatTensors.
    """
    inputs, labels, fbanks = zip(*data)
    x = torch.FloatTensor(inputs)
    y = torch.FloatTensor(labels)
    z = torch.FloatTensor(fbanks)
    return x, y, z

class DistributedSampler(data.Sampler):
    """
    Sampler for distributed training. Divides the dataset among multiple replicas (processes), 
    ensuring that each process gets a unique subset of the data. It also supports shuffling 
    and managing epochs.

    Parameters:
    dataset (Dataset): The dataset to sample from.
    num_replicas (int): Number of processes participating in the training.
    rank (int): Rank of the current process.
    shuffle (bool): Whether to shuffle the data or not.
    seed (int): Random seed for reproducibility.
    """

    def __init__(self, dataset, num_replicas=None, rank=None, shuffle=True, seed=0):
        if num_replicas is None:
            if not dist.is_available():
                raise RuntimeError("Requires distributed package to be available")
            num_replicas = dist.get_world_size()
        if rank is None:
            if not dist.is_available():
                raise RuntimeError("Requires distributed package to be available")
            rank = dist.get_rank()
        
        self.dataset = dataset
        self.num_replicas = num_replicas
        self.rank = rank
        self.epoch = 0
        self.num_samples = int(math.ceil(len(self.dataset) * 1.0 / self.num_replicas))
        self.total_size = self.num_samples * self.num_replicas
        self.shuffle = shuffle
        self.seed = seed

    def __iter__(self):
        # Shuffle the indices based on the epoch and seed.
        if self.shuffle:
            g = torch.Generator()
            g.manual_seed(self.seed + self.epoch)
            ind = torch.randperm(int(len(self.dataset) / self.num_replicas), generator=g) * self.num_replicas
            indices = []
            for i in range(self.num_replicas):
                indices = indices + (ind + i).tolist()
        else:
            indices = list(range(len(self.dataset)))
        
        # Add extra samples to make the dataset evenly divisible.
        indices += indices[:(self.total_size - len(indices))]
        assert len(indices) == self.total_size

        # Subsample for the current process.
        indices = indices[self.rank * self.num_samples:(self.rank + 1) * self.num_samples]
        assert len(indices) == self.num_samples

        return iter(indices)

    def __len__(self):
        return self.num_samples

    def set_epoch(self, epoch):
        self.epoch = epoch

def get_dataloader(args, data_type):
    """
    Creates and returns a data loader and sampler for the specified dataset type (train, validation, or test).
    
    Parameters:
    args (Namespace): Configuration arguments containing details such as batch size, sampling rate, 
                      network type, and whether distributed training is used.
    data_type (str): The type of dataset to load ('train', 'val', 'test').
    
    Returns:
    sampler (DistributedSampler or None): The sampler for distributed training, or None if not used.
    generator (DataLoader): The PyTorch DataLoader for the specified dataset.
    """
    
    # Initialize the dataset based on the given arguments and dataset type (train, val, or test).
    datasets = AudioDataset(args=args, data_type=data_type)

    # Create a distributed sampler if distributed training is enabled; otherwise, use no sampler.
    sampler = DistributedSampler(
        datasets,
        num_replicas=args.world_size,  # Number of replicas in distributed training.
        rank=args.local_rank  # Rank of the current process.
    ) if args.distributed else None

    # Select the appropriate collate function based on the network type.
    if args.network == 'FRCRN_SE_16K' or args.network == 'MossFormerGAN_SE_16K':
        # Use the collate function for two-channel waveform data (inputs and labels).
        collate_fn = collate_fn_2x_wavs
    elif args.network == 'MossFormer2_SE_48K':
        # Use the collate function for waveforms along with Fbank features.
        collate_fn = collate_fn_2x_wavs_fbank
    else:
        # Print an error message if the network type is unknown.
        print(f'in dataloader, please specify a correct network type using args.network!')
        return

    # Create a DataLoader with the specified dataset, batch size, and worker configuration.
    generator = data.DataLoader(
        datasets,
        batch_size=args.batch_size,  # Batch size for training.
        shuffle=(sampler is None),  # Shuffle the data only if no sampler is used.
        collate_fn=collate_fn,  # Use the selected collate function for batching data.
        num_workers=args.num_workers,  # Number of workers for data loading.
        sampler=sampler  # Use the distributed sampler if applicable.
    )
    
    # Return both the sampler and DataLoader (generator).
    return sampler, generator