File size: 16,322 Bytes
8e8cd3e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
import torch

import sys, time, os, tqdm, torch, argparse, glob, subprocess, warnings, cv2, pickle, pdb, math, python_speech_features
import numpy as np
from scipy import signal
from shutil import rmtree
from scipy.io import wavfile
from scipy.interpolate import interp1d
from sklearn.metrics import accuracy_score, f1_score
import soundfile as sf

from scenedetect.video_manager import VideoManager
from scenedetect.scene_manager import SceneManager
from scenedetect.frame_timecode import FrameTimecode
from scenedetect.stats_manager import StatsManager
from scenedetect.detectors import ContentDetector

from models.av_mossformer2_tse.faceDetector.s3fd import S3FD

from .decode import decode_one_audio_AV_MossFormer2_TSE_16K



def process_tse(args, model, device, data_reader, output_wave_dir):
	video_args = args_param()
	video_args.model = model
	video_args.device = device
	video_args.sampling_rate = args.sampling_rate
	args.device = device
	assert args.sampling_rate == 16000
	with torch.no_grad():
		for videoPath in data_reader:  # Loop over all video samples
			savFolder = videoPath.split('/')[-1]
			video_args.savePath = f'{output_wave_dir}/{savFolder[:-4]}/'
			video_args.videoPath = videoPath
			main(video_args, args)



def args_param():
    warnings.filterwarnings("ignore")
    parser = argparse.ArgumentParser()
    parser.add_argument('--nDataLoaderThread',     type=int,   default=10,   help='Number of workers')
    parser.add_argument('--facedetScale',          type=float, default=0.25, help='Scale factor for face detection, the frames will be scale to 0.25 orig')
    parser.add_argument('--minTrack',              type=int,   default=50,   help='Number of min frames for each shot')
    parser.add_argument('--numFailedDet',          type=int,   default=10,   help='Number of missed detections allowed before tracking is stopped')
    parser.add_argument('--minFaceSize',           type=int,   default=1,    help='Minimum face size in pixels')
    parser.add_argument('--cropScale',             type=float, default=0.40, help='Scale bounding box')
    parser.add_argument('--start',                 type=int, default=0,   help='The start time of the video')
    parser.add_argument('--duration',              type=int, default=0,  help='The duration of the video, when set as 0, will extract the whole video')
    video_args = parser.parse_args()
    return video_args


# Main function
def main(video_args, args):
    # Initialization 
    video_args.pyaviPath = os.path.join(video_args.savePath, 'py_video')
    video_args.pyframesPath = os.path.join(video_args.savePath, 'pyframes')
    video_args.pyworkPath = os.path.join(video_args.savePath, 'pywork')
    video_args.pycropPath = os.path.join(video_args.savePath, 'py_faceTracks')
    if os.path.exists(video_args.savePath):
        rmtree(video_args.savePath)
    os.makedirs(video_args.pyaviPath, exist_ok = True) # The path for the input video, input audio, output video
    os.makedirs(video_args.pyframesPath, exist_ok = True) # Save all the video frames
    os.makedirs(video_args.pyworkPath, exist_ok = True) # Save the results in this process by the pckl method
    os.makedirs(video_args.pycropPath, exist_ok = True) # Save the detected face clips (audio+video) in this process

    # Extract video
    video_args.videoFilePath = os.path.join(video_args.pyaviPath, 'video.avi')
    # If duration did not set, extract the whole video, otherwise extract the video from 'video_args.start' to 'video_args.start + video_args.duration'
    if video_args.duration == 0:
        command = ("ffmpeg -y -i %s -qscale:v 2 -threads %d -async 1 -r 25 %s -loglevel panic" % \
            (video_args.videoPath, video_args.nDataLoaderThread, video_args.videoFilePath))
    else:
        command = ("ffmpeg -y -i %s -qscale:v 2 -threads %d -ss %.3f -to %.3f -async 1 -r 25 %s -loglevel panic" % \
            (video_args.videoPath, video_args.nDataLoaderThread, video_args.start, video_args.start + video_args.duration, video_args.videoFilePath))
    subprocess.call(command, shell=True, stdout=None)
    sys.stderr.write(time.strftime("%Y-%m-%d %H:%M:%S") + " Extract the video and save in %s \r\n" %(video_args.videoFilePath))

    # Extract audio
    video_args.audioFilePath = os.path.join(video_args.pyaviPath, 'audio.wav')
    command = ("ffmpeg -y -i %s -qscale:a 0 -ac 1 -vn -threads %d -ar 16000 %s -loglevel panic" % \
        (video_args.videoFilePath, video_args.nDataLoaderThread, video_args.audioFilePath))
    subprocess.call(command, shell=True, stdout=None)
    sys.stderr.write(time.strftime("%Y-%m-%d %H:%M:%S") + " Extract the audio and save in %s \r\n" %(video_args.audioFilePath))

    # Extract the video frames
    command = ("ffmpeg -y -i %s -qscale:v 2 -threads %d -f image2 %s -loglevel panic" % \
        (video_args.videoFilePath, video_args.nDataLoaderThread, os.path.join(video_args.pyframesPath, '%06d.jpg'))) 
    subprocess.call(command, shell=True, stdout=None)
    sys.stderr.write(time.strftime("%Y-%m-%d %H:%M:%S") + " Extract the frames and save in %s \r\n" %(video_args.pyframesPath))

    # Scene detection for the video frames
    scene = scene_detect(video_args)
    sys.stderr.write(time.strftime("%Y-%m-%d %H:%M:%S") + " Scene detection and save in %s \r\n" %(video_args.pyworkPath))	

    # Face detection for the video frames
    faces = inference_video(video_args)
    sys.stderr.write(time.strftime("%Y-%m-%d %H:%M:%S") + " Face detection and save in %s \r\n" %(video_args.pyworkPath))

    # Face tracking
    allTracks, vidTracks = [], []
    for shot in scene:
        if shot[1].frame_num - shot[0].frame_num >= video_args.minTrack: # Discard the shot frames less than minTrack frames
            allTracks.extend(track_shot(video_args, faces[shot[0].frame_num:shot[1].frame_num])) # 'frames' to present this tracks' timestep, 'bbox' presents the location of the faces
    sys.stderr.write(time.strftime("%Y-%m-%d %H:%M:%S") + " Face track and detected %d tracks \r\n" %len(allTracks))

    # Face clips cropping
    for ii, track in tqdm.tqdm(enumerate(allTracks), total = len(allTracks)):
        vidTracks.append(crop_video(video_args, track, os.path.join(video_args.pycropPath, '%05d'%ii)))
    savePath = os.path.join(video_args.pyworkPath, 'tracks.pckl')
    with open(savePath, 'wb') as fil:
        pickle.dump(vidTracks, fil)
    sys.stderr.write(time.strftime("%Y-%m-%d %H:%M:%S") + " Face Crop and saved in %s tracks \r\n" %video_args.pycropPath)
    fil = open(savePath, 'rb')
    vidTracks = pickle.load(fil)
    fil.close()

    # AVSE
    files = glob.glob("%s/*.avi"%video_args.pycropPath)
    files.sort()

    est_sources = evaluate_network(files, video_args, args)

    visualization(vidTracks, est_sources, video_args)	

    # combine files in pycrop
    for idx, file in enumerate(files):
        print(file)
        command = f"ffmpeg -i {file} {file[:-9]}orig_{idx}.mp4 ;"
        command += f"rm {file} ;"
        command += f"rm {file.replace('.avi', '.wav')} ;"

        command += f"ffmpeg -i {file[:-9]}orig_{idx}.mp4 -i {file[:-9]}est_{idx}.wav -c:v copy -map 0:v:0 -map 1:a:0 -shortest {file[:-9]}est_{idx}.mp4 ;"
        # command += f"rm {file[:-9]}est_{idx}.wav ;"

        output = subprocess.call(command, shell=True, stdout=None)

    rmtree(video_args.pyworkPath)
    rmtree(video_args.pyframesPath)




def scene_detect(video_args):
	# CPU: Scene detection, output is the list of each shot's time duration
	videoManager = VideoManager([video_args.videoFilePath])
	statsManager = StatsManager()
	sceneManager = SceneManager(statsManager)
	sceneManager.add_detector(ContentDetector())
	baseTimecode = videoManager.get_base_timecode()
	videoManager.set_downscale_factor()
	videoManager.start()
	sceneManager.detect_scenes(frame_source = videoManager)
	sceneList = sceneManager.get_scene_list(baseTimecode)
	savePath = os.path.join(video_args.pyworkPath, 'scene.pckl')
	if sceneList == []:
		sceneList = [(videoManager.get_base_timecode(),videoManager.get_current_timecode())]
	with open(savePath, 'wb') as fil:
		pickle.dump(sceneList, fil)
		sys.stderr.write('%s - scenes detected %d\n'%(video_args.videoFilePath, len(sceneList)))
	return sceneList

def inference_video(video_args):
	# GPU: Face detection, output is the list contains the face location and score in this frame
	DET = S3FD(device=video_args.device)
	flist = glob.glob(os.path.join(video_args.pyframesPath, '*.jpg'))
	flist.sort()
	dets = []
	for fidx, fname in enumerate(flist):
		image = cv2.imread(fname)
		imageNumpy = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
		bboxes = DET.detect_faces(imageNumpy, conf_th=0.9, scales=[video_args.facedetScale])
		dets.append([])
		for bbox in bboxes:
		  dets[-1].append({'frame':fidx, 'bbox':(bbox[:-1]).tolist(), 'conf':bbox[-1]}) # dets has the frames info, bbox info, conf info
		sys.stderr.write('%s-%05d; %d dets\r' % (video_args.videoFilePath, fidx, len(dets[-1])))
	savePath = os.path.join(video_args.pyworkPath,'faces.pckl')
	with open(savePath, 'wb') as fil:
		pickle.dump(dets, fil)
	return dets

def bb_intersection_over_union(boxA, boxB, evalCol = False):
	# CPU: IOU Function to calculate overlap between two image
	xA = max(boxA[0], boxB[0])
	yA = max(boxA[1], boxB[1])
	xB = min(boxA[2], boxB[2])
	yB = min(boxA[3], boxB[3])
	interArea = max(0, xB - xA) * max(0, yB - yA)
	boxAArea = (boxA[2] - boxA[0]) * (boxA[3] - boxA[1])
	boxBArea = (boxB[2] - boxB[0]) * (boxB[3] - boxB[1])
	if evalCol == True:
		iou = interArea / float(boxAArea)
	else:
		iou = interArea / float(boxAArea + boxBArea - interArea)
	return iou

def track_shot(video_args, sceneFaces):
	# CPU: Face tracking
	iouThres  = 0.5     # Minimum IOU between consecutive face detections
	tracks    = []
	while True:
		track     = []
		for frameFaces in sceneFaces:
			for face in frameFaces:
				if track == []:
					track.append(face)
					frameFaces.remove(face)
				elif face['frame'] - track[-1]['frame'] <= video_args.numFailedDet:
					iou = bb_intersection_over_union(face['bbox'], track[-1]['bbox'])
					if iou > iouThres:
						track.append(face)
						frameFaces.remove(face)
						continue
				else:
					break
		if track == []:
			break
		elif len(track) > video_args.minTrack:
			frameNum    = np.array([ f['frame'] for f in track ])
			bboxes      = np.array([np.array(f['bbox']) for f in track])
			frameI      = np.arange(frameNum[0],frameNum[-1]+1)
			bboxesI    = []
			for ij in range(0,4):
				interpfn  = interp1d(frameNum, bboxes[:,ij])
				bboxesI.append(interpfn(frameI))
			bboxesI  = np.stack(bboxesI, axis=1)
			if max(np.mean(bboxesI[:,2]-bboxesI[:,0]), np.mean(bboxesI[:,3]-bboxesI[:,1])) > video_args.minFaceSize:
				tracks.append({'frame':frameI,'bbox':bboxesI})
	return tracks

def crop_video(video_args, track, cropFile):
	# CPU: crop the face clips
	flist = glob.glob(os.path.join(video_args.pyframesPath, '*.jpg')) # Read the frames
	flist.sort()
	vOut = cv2.VideoWriter(cropFile + 't.avi', cv2.VideoWriter_fourcc(*'XVID'), 25, (224,224))# Write video
	dets = {'x':[], 'y':[], 's':[]}
	for det in track['bbox']: # Read the tracks
		dets['s'].append(max((det[3]-det[1]), (det[2]-det[0]))/2) 
		dets['y'].append((det[1]+det[3])/2) # crop center x 
		dets['x'].append((det[0]+det[2])/2) # crop center y
	dets['s'] = signal.medfilt(dets['s'], kernel_size=13)  # Smooth detections 
	dets['x'] = signal.medfilt(dets['x'], kernel_size=13)
	dets['y'] = signal.medfilt(dets['y'], kernel_size=13)
	for fidx, frame in enumerate(track['frame']):
		cs  = video_args.cropScale
		bs  = dets['s'][fidx]   # Detection box size
		bsi = int(bs * (1 + 2 * cs))  # Pad videos by this amount 
		image = cv2.imread(flist[frame])
		frame = np.pad(image, ((bsi,bsi), (bsi,bsi), (0, 0)), 'constant', constant_values=(110, 110))
		my  = dets['y'][fidx] + bsi  # BBox center Y
		mx  = dets['x'][fidx] + bsi  # BBox center X
		face = frame[int(my-bs):int(my+bs*(1+2*cs)),int(mx-bs*(1+cs)):int(mx+bs*(1+cs))]
		vOut.write(cv2.resize(face, (224, 224)))
	audioTmp    = cropFile + '.wav'
	audioStart  = (track['frame'][0]) / 25
	audioEnd    = (track['frame'][-1]+1) / 25
	vOut.release()
	command = ("ffmpeg -y -i %s -async 1 -ac 1 -vn -acodec pcm_s16le -ar 16000 -threads %d -ss %.3f -to %.3f %s -loglevel panic" % \
		      (video_args.audioFilePath, video_args.nDataLoaderThread, audioStart, audioEnd, audioTmp)) 
	output = subprocess.call(command, shell=True, stdout=None) # Crop audio file
	_, audio = wavfile.read(audioTmp)
	command = ("ffmpeg -y -i %st.avi -i %s -threads %d -c:v copy -c:a copy %s.avi -loglevel panic" % \
			  (cropFile, audioTmp, video_args.nDataLoaderThread, cropFile)) # Combine audio and video file
	output = subprocess.call(command, shell=True, stdout=None)
	os.remove(cropFile + 't.avi')
	return {'track':track, 'proc_track':dets}


def evaluate_network(files, video_args, args):

	est_sources = []
	for file in tqdm.tqdm(files, total = len(files)):

		fileName = os.path.splitext(file.split('/')[-1])[0] # Load audio and video
		audio, _ = sf.read(os.path.join(video_args.pycropPath, fileName + '.wav'), dtype='float32')

		video = cv2.VideoCapture(os.path.join(video_args.pycropPath, fileName + '.avi'))
		videoFeature = []
		while video.isOpened():
			ret, frames = video.read()
			if ret == True:
				face = cv2.cvtColor(frames, cv2.COLOR_BGR2GRAY)
				face = cv2.resize(face, (224,224))
				face = face[int(112-(112/2)):int(112+(112/2)), int(112-(112/2)):int(112+(112/2))]
				videoFeature.append(face)
			else:
				break

		video.release()
		visual = np.array(videoFeature)/255.0
		visual = (visual - 0.4161)/0.1688

		length = int(audio.shape[0]/16000*25)
		if visual.shape[0] < length:
			visual = np.pad(visual, ((0,int(length - visual.shape[0])),(0,0),(0,0)), mode = 'edge')

		audio = np.expand_dims(audio, axis=0)
		visual = np.expand_dims(visual, axis=0)

		inputs = (audio, visual)
		est_source = decode_one_audio_AV_MossFormer2_TSE_16K(video_args.model, inputs, args)

		est_sources.append(est_source)

	return est_sources

def visualization(tracks, est_sources, video_args):
	# CPU: visulize the result for video format
	flist = glob.glob(os.path.join(video_args.pyframesPath, '*.jpg'))
	flist.sort()
	

	for idx, audio in enumerate(est_sources):
		max_value = np.max(np.abs(audio))
		if max_value >1:
			audio /= max_value
		sf.write(video_args.pycropPath +'/est_%s.wav' %idx, audio, 16000)

	for tidx, track in enumerate(tracks):
		faces = [[] for i in range(len(flist))]
		for fidx, frame in enumerate(track['track']['frame'].tolist()):
			faces[frame].append({'track':tidx, 's':track['proc_track']['s'][fidx], 'x':track['proc_track']['x'][fidx], 'y':track['proc_track']['y'][fidx]})
	
		firstImage = cv2.imread(flist[0])
		fw = firstImage.shape[1]
		fh = firstImage.shape[0]
		vOut = cv2.VideoWriter(os.path.join(video_args.pyaviPath, 'video_only.avi'), cv2.VideoWriter_fourcc(*'XVID'), 25, (fw,fh))
		for fidx, fname in tqdm.tqdm(enumerate(flist), total = len(flist)):
			image = cv2.imread(fname)
			for face in faces[fidx]:
				cv2.rectangle(image, (int(face['x']-face['s']), int(face['y']-face['s'])), (int(face['x']+face['s']), int(face['y']+face['s'])),(0,255,0),10)
			vOut.write(image)
		vOut.release()

		command = ("ffmpeg -y -i %s -i %s -threads %d -c:v copy -c:a copy %s -loglevel panic" % \
			(os.path.join(video_args.pyaviPath, 'video_only.avi'), (video_args.pycropPath +'/est_%s.wav' %tidx), \
			video_args.nDataLoaderThread, os.path.join(video_args.pyaviPath,'video_out_%s.avi'%tidx))) 
		output = subprocess.call(command, shell=True, stdout=None)




		command = "ffmpeg -i %s %s ;" % (
					os.path.join(video_args.pyaviPath, 'video_out_%s.avi' % tidx),
					os.path.join(video_args.pyaviPath, 'video_est_%s.mp4' % tidx)
				)
		command += f"rm {os.path.join(video_args.pyaviPath, 'video_out_%s.avi' % tidx)}"
		output = subprocess.call(command, shell=True, stdout=None)


	command = "ffmpeg -i %s %s ;" % (
				os.path.join(video_args.pyaviPath, 'video.avi'),
				os.path.join(video_args.pyaviPath, 'video_orig.mp4')
			)
	command += f"rm {os.path.join(video_args.pyaviPath, 'video_only.avi')} ;"
	command += f"rm {os.path.join(video_args.pyaviPath, 'video.avi')} ;"
	command += f"rm {os.path.join(video_args.pyaviPath, 'audio.wav')} ;"
	output = subprocess.call(command, shell=True, stdout=None)