Spaces:
Running
on
Zero
Running
on
Zero
File size: 16,322 Bytes
8e8cd3e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 |
import torch
import sys, time, os, tqdm, torch, argparse, glob, subprocess, warnings, cv2, pickle, pdb, math, python_speech_features
import numpy as np
from scipy import signal
from shutil import rmtree
from scipy.io import wavfile
from scipy.interpolate import interp1d
from sklearn.metrics import accuracy_score, f1_score
import soundfile as sf
from scenedetect.video_manager import VideoManager
from scenedetect.scene_manager import SceneManager
from scenedetect.frame_timecode import FrameTimecode
from scenedetect.stats_manager import StatsManager
from scenedetect.detectors import ContentDetector
from models.av_mossformer2_tse.faceDetector.s3fd import S3FD
from .decode import decode_one_audio_AV_MossFormer2_TSE_16K
def process_tse(args, model, device, data_reader, output_wave_dir):
video_args = args_param()
video_args.model = model
video_args.device = device
video_args.sampling_rate = args.sampling_rate
args.device = device
assert args.sampling_rate == 16000
with torch.no_grad():
for videoPath in data_reader: # Loop over all video samples
savFolder = videoPath.split('/')[-1]
video_args.savePath = f'{output_wave_dir}/{savFolder[:-4]}/'
video_args.videoPath = videoPath
main(video_args, args)
def args_param():
warnings.filterwarnings("ignore")
parser = argparse.ArgumentParser()
parser.add_argument('--nDataLoaderThread', type=int, default=10, help='Number of workers')
parser.add_argument('--facedetScale', type=float, default=0.25, help='Scale factor for face detection, the frames will be scale to 0.25 orig')
parser.add_argument('--minTrack', type=int, default=50, help='Number of min frames for each shot')
parser.add_argument('--numFailedDet', type=int, default=10, help='Number of missed detections allowed before tracking is stopped')
parser.add_argument('--minFaceSize', type=int, default=1, help='Minimum face size in pixels')
parser.add_argument('--cropScale', type=float, default=0.40, help='Scale bounding box')
parser.add_argument('--start', type=int, default=0, help='The start time of the video')
parser.add_argument('--duration', type=int, default=0, help='The duration of the video, when set as 0, will extract the whole video')
video_args = parser.parse_args()
return video_args
# Main function
def main(video_args, args):
# Initialization
video_args.pyaviPath = os.path.join(video_args.savePath, 'py_video')
video_args.pyframesPath = os.path.join(video_args.savePath, 'pyframes')
video_args.pyworkPath = os.path.join(video_args.savePath, 'pywork')
video_args.pycropPath = os.path.join(video_args.savePath, 'py_faceTracks')
if os.path.exists(video_args.savePath):
rmtree(video_args.savePath)
os.makedirs(video_args.pyaviPath, exist_ok = True) # The path for the input video, input audio, output video
os.makedirs(video_args.pyframesPath, exist_ok = True) # Save all the video frames
os.makedirs(video_args.pyworkPath, exist_ok = True) # Save the results in this process by the pckl method
os.makedirs(video_args.pycropPath, exist_ok = True) # Save the detected face clips (audio+video) in this process
# Extract video
video_args.videoFilePath = os.path.join(video_args.pyaviPath, 'video.avi')
# If duration did not set, extract the whole video, otherwise extract the video from 'video_args.start' to 'video_args.start + video_args.duration'
if video_args.duration == 0:
command = ("ffmpeg -y -i %s -qscale:v 2 -threads %d -async 1 -r 25 %s -loglevel panic" % \
(video_args.videoPath, video_args.nDataLoaderThread, video_args.videoFilePath))
else:
command = ("ffmpeg -y -i %s -qscale:v 2 -threads %d -ss %.3f -to %.3f -async 1 -r 25 %s -loglevel panic" % \
(video_args.videoPath, video_args.nDataLoaderThread, video_args.start, video_args.start + video_args.duration, video_args.videoFilePath))
subprocess.call(command, shell=True, stdout=None)
sys.stderr.write(time.strftime("%Y-%m-%d %H:%M:%S") + " Extract the video and save in %s \r\n" %(video_args.videoFilePath))
# Extract audio
video_args.audioFilePath = os.path.join(video_args.pyaviPath, 'audio.wav')
command = ("ffmpeg -y -i %s -qscale:a 0 -ac 1 -vn -threads %d -ar 16000 %s -loglevel panic" % \
(video_args.videoFilePath, video_args.nDataLoaderThread, video_args.audioFilePath))
subprocess.call(command, shell=True, stdout=None)
sys.stderr.write(time.strftime("%Y-%m-%d %H:%M:%S") + " Extract the audio and save in %s \r\n" %(video_args.audioFilePath))
# Extract the video frames
command = ("ffmpeg -y -i %s -qscale:v 2 -threads %d -f image2 %s -loglevel panic" % \
(video_args.videoFilePath, video_args.nDataLoaderThread, os.path.join(video_args.pyframesPath, '%06d.jpg')))
subprocess.call(command, shell=True, stdout=None)
sys.stderr.write(time.strftime("%Y-%m-%d %H:%M:%S") + " Extract the frames and save in %s \r\n" %(video_args.pyframesPath))
# Scene detection for the video frames
scene = scene_detect(video_args)
sys.stderr.write(time.strftime("%Y-%m-%d %H:%M:%S") + " Scene detection and save in %s \r\n" %(video_args.pyworkPath))
# Face detection for the video frames
faces = inference_video(video_args)
sys.stderr.write(time.strftime("%Y-%m-%d %H:%M:%S") + " Face detection and save in %s \r\n" %(video_args.pyworkPath))
# Face tracking
allTracks, vidTracks = [], []
for shot in scene:
if shot[1].frame_num - shot[0].frame_num >= video_args.minTrack: # Discard the shot frames less than minTrack frames
allTracks.extend(track_shot(video_args, faces[shot[0].frame_num:shot[1].frame_num])) # 'frames' to present this tracks' timestep, 'bbox' presents the location of the faces
sys.stderr.write(time.strftime("%Y-%m-%d %H:%M:%S") + " Face track and detected %d tracks \r\n" %len(allTracks))
# Face clips cropping
for ii, track in tqdm.tqdm(enumerate(allTracks), total = len(allTracks)):
vidTracks.append(crop_video(video_args, track, os.path.join(video_args.pycropPath, '%05d'%ii)))
savePath = os.path.join(video_args.pyworkPath, 'tracks.pckl')
with open(savePath, 'wb') as fil:
pickle.dump(vidTracks, fil)
sys.stderr.write(time.strftime("%Y-%m-%d %H:%M:%S") + " Face Crop and saved in %s tracks \r\n" %video_args.pycropPath)
fil = open(savePath, 'rb')
vidTracks = pickle.load(fil)
fil.close()
# AVSE
files = glob.glob("%s/*.avi"%video_args.pycropPath)
files.sort()
est_sources = evaluate_network(files, video_args, args)
visualization(vidTracks, est_sources, video_args)
# combine files in pycrop
for idx, file in enumerate(files):
print(file)
command = f"ffmpeg -i {file} {file[:-9]}orig_{idx}.mp4 ;"
command += f"rm {file} ;"
command += f"rm {file.replace('.avi', '.wav')} ;"
command += f"ffmpeg -i {file[:-9]}orig_{idx}.mp4 -i {file[:-9]}est_{idx}.wav -c:v copy -map 0:v:0 -map 1:a:0 -shortest {file[:-9]}est_{idx}.mp4 ;"
# command += f"rm {file[:-9]}est_{idx}.wav ;"
output = subprocess.call(command, shell=True, stdout=None)
rmtree(video_args.pyworkPath)
rmtree(video_args.pyframesPath)
def scene_detect(video_args):
# CPU: Scene detection, output is the list of each shot's time duration
videoManager = VideoManager([video_args.videoFilePath])
statsManager = StatsManager()
sceneManager = SceneManager(statsManager)
sceneManager.add_detector(ContentDetector())
baseTimecode = videoManager.get_base_timecode()
videoManager.set_downscale_factor()
videoManager.start()
sceneManager.detect_scenes(frame_source = videoManager)
sceneList = sceneManager.get_scene_list(baseTimecode)
savePath = os.path.join(video_args.pyworkPath, 'scene.pckl')
if sceneList == []:
sceneList = [(videoManager.get_base_timecode(),videoManager.get_current_timecode())]
with open(savePath, 'wb') as fil:
pickle.dump(sceneList, fil)
sys.stderr.write('%s - scenes detected %d\n'%(video_args.videoFilePath, len(sceneList)))
return sceneList
def inference_video(video_args):
# GPU: Face detection, output is the list contains the face location and score in this frame
DET = S3FD(device=video_args.device)
flist = glob.glob(os.path.join(video_args.pyframesPath, '*.jpg'))
flist.sort()
dets = []
for fidx, fname in enumerate(flist):
image = cv2.imread(fname)
imageNumpy = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
bboxes = DET.detect_faces(imageNumpy, conf_th=0.9, scales=[video_args.facedetScale])
dets.append([])
for bbox in bboxes:
dets[-1].append({'frame':fidx, 'bbox':(bbox[:-1]).tolist(), 'conf':bbox[-1]}) # dets has the frames info, bbox info, conf info
sys.stderr.write('%s-%05d; %d dets\r' % (video_args.videoFilePath, fidx, len(dets[-1])))
savePath = os.path.join(video_args.pyworkPath,'faces.pckl')
with open(savePath, 'wb') as fil:
pickle.dump(dets, fil)
return dets
def bb_intersection_over_union(boxA, boxB, evalCol = False):
# CPU: IOU Function to calculate overlap between two image
xA = max(boxA[0], boxB[0])
yA = max(boxA[1], boxB[1])
xB = min(boxA[2], boxB[2])
yB = min(boxA[3], boxB[3])
interArea = max(0, xB - xA) * max(0, yB - yA)
boxAArea = (boxA[2] - boxA[0]) * (boxA[3] - boxA[1])
boxBArea = (boxB[2] - boxB[0]) * (boxB[3] - boxB[1])
if evalCol == True:
iou = interArea / float(boxAArea)
else:
iou = interArea / float(boxAArea + boxBArea - interArea)
return iou
def track_shot(video_args, sceneFaces):
# CPU: Face tracking
iouThres = 0.5 # Minimum IOU between consecutive face detections
tracks = []
while True:
track = []
for frameFaces in sceneFaces:
for face in frameFaces:
if track == []:
track.append(face)
frameFaces.remove(face)
elif face['frame'] - track[-1]['frame'] <= video_args.numFailedDet:
iou = bb_intersection_over_union(face['bbox'], track[-1]['bbox'])
if iou > iouThres:
track.append(face)
frameFaces.remove(face)
continue
else:
break
if track == []:
break
elif len(track) > video_args.minTrack:
frameNum = np.array([ f['frame'] for f in track ])
bboxes = np.array([np.array(f['bbox']) for f in track])
frameI = np.arange(frameNum[0],frameNum[-1]+1)
bboxesI = []
for ij in range(0,4):
interpfn = interp1d(frameNum, bboxes[:,ij])
bboxesI.append(interpfn(frameI))
bboxesI = np.stack(bboxesI, axis=1)
if max(np.mean(bboxesI[:,2]-bboxesI[:,0]), np.mean(bboxesI[:,3]-bboxesI[:,1])) > video_args.minFaceSize:
tracks.append({'frame':frameI,'bbox':bboxesI})
return tracks
def crop_video(video_args, track, cropFile):
# CPU: crop the face clips
flist = glob.glob(os.path.join(video_args.pyframesPath, '*.jpg')) # Read the frames
flist.sort()
vOut = cv2.VideoWriter(cropFile + 't.avi', cv2.VideoWriter_fourcc(*'XVID'), 25, (224,224))# Write video
dets = {'x':[], 'y':[], 's':[]}
for det in track['bbox']: # Read the tracks
dets['s'].append(max((det[3]-det[1]), (det[2]-det[0]))/2)
dets['y'].append((det[1]+det[3])/2) # crop center x
dets['x'].append((det[0]+det[2])/2) # crop center y
dets['s'] = signal.medfilt(dets['s'], kernel_size=13) # Smooth detections
dets['x'] = signal.medfilt(dets['x'], kernel_size=13)
dets['y'] = signal.medfilt(dets['y'], kernel_size=13)
for fidx, frame in enumerate(track['frame']):
cs = video_args.cropScale
bs = dets['s'][fidx] # Detection box size
bsi = int(bs * (1 + 2 * cs)) # Pad videos by this amount
image = cv2.imread(flist[frame])
frame = np.pad(image, ((bsi,bsi), (bsi,bsi), (0, 0)), 'constant', constant_values=(110, 110))
my = dets['y'][fidx] + bsi # BBox center Y
mx = dets['x'][fidx] + bsi # BBox center X
face = frame[int(my-bs):int(my+bs*(1+2*cs)),int(mx-bs*(1+cs)):int(mx+bs*(1+cs))]
vOut.write(cv2.resize(face, (224, 224)))
audioTmp = cropFile + '.wav'
audioStart = (track['frame'][0]) / 25
audioEnd = (track['frame'][-1]+1) / 25
vOut.release()
command = ("ffmpeg -y -i %s -async 1 -ac 1 -vn -acodec pcm_s16le -ar 16000 -threads %d -ss %.3f -to %.3f %s -loglevel panic" % \
(video_args.audioFilePath, video_args.nDataLoaderThread, audioStart, audioEnd, audioTmp))
output = subprocess.call(command, shell=True, stdout=None) # Crop audio file
_, audio = wavfile.read(audioTmp)
command = ("ffmpeg -y -i %st.avi -i %s -threads %d -c:v copy -c:a copy %s.avi -loglevel panic" % \
(cropFile, audioTmp, video_args.nDataLoaderThread, cropFile)) # Combine audio and video file
output = subprocess.call(command, shell=True, stdout=None)
os.remove(cropFile + 't.avi')
return {'track':track, 'proc_track':dets}
def evaluate_network(files, video_args, args):
est_sources = []
for file in tqdm.tqdm(files, total = len(files)):
fileName = os.path.splitext(file.split('/')[-1])[0] # Load audio and video
audio, _ = sf.read(os.path.join(video_args.pycropPath, fileName + '.wav'), dtype='float32')
video = cv2.VideoCapture(os.path.join(video_args.pycropPath, fileName + '.avi'))
videoFeature = []
while video.isOpened():
ret, frames = video.read()
if ret == True:
face = cv2.cvtColor(frames, cv2.COLOR_BGR2GRAY)
face = cv2.resize(face, (224,224))
face = face[int(112-(112/2)):int(112+(112/2)), int(112-(112/2)):int(112+(112/2))]
videoFeature.append(face)
else:
break
video.release()
visual = np.array(videoFeature)/255.0
visual = (visual - 0.4161)/0.1688
length = int(audio.shape[0]/16000*25)
if visual.shape[0] < length:
visual = np.pad(visual, ((0,int(length - visual.shape[0])),(0,0),(0,0)), mode = 'edge')
audio = np.expand_dims(audio, axis=0)
visual = np.expand_dims(visual, axis=0)
inputs = (audio, visual)
est_source = decode_one_audio_AV_MossFormer2_TSE_16K(video_args.model, inputs, args)
est_sources.append(est_source)
return est_sources
def visualization(tracks, est_sources, video_args):
# CPU: visulize the result for video format
flist = glob.glob(os.path.join(video_args.pyframesPath, '*.jpg'))
flist.sort()
for idx, audio in enumerate(est_sources):
max_value = np.max(np.abs(audio))
if max_value >1:
audio /= max_value
sf.write(video_args.pycropPath +'/est_%s.wav' %idx, audio, 16000)
for tidx, track in enumerate(tracks):
faces = [[] for i in range(len(flist))]
for fidx, frame in enumerate(track['track']['frame'].tolist()):
faces[frame].append({'track':tidx, 's':track['proc_track']['s'][fidx], 'x':track['proc_track']['x'][fidx], 'y':track['proc_track']['y'][fidx]})
firstImage = cv2.imread(flist[0])
fw = firstImage.shape[1]
fh = firstImage.shape[0]
vOut = cv2.VideoWriter(os.path.join(video_args.pyaviPath, 'video_only.avi'), cv2.VideoWriter_fourcc(*'XVID'), 25, (fw,fh))
for fidx, fname in tqdm.tqdm(enumerate(flist), total = len(flist)):
image = cv2.imread(fname)
for face in faces[fidx]:
cv2.rectangle(image, (int(face['x']-face['s']), int(face['y']-face['s'])), (int(face['x']+face['s']), int(face['y']+face['s'])),(0,255,0),10)
vOut.write(image)
vOut.release()
command = ("ffmpeg -y -i %s -i %s -threads %d -c:v copy -c:a copy %s -loglevel panic" % \
(os.path.join(video_args.pyaviPath, 'video_only.avi'), (video_args.pycropPath +'/est_%s.wav' %tidx), \
video_args.nDataLoaderThread, os.path.join(video_args.pyaviPath,'video_out_%s.avi'%tidx)))
output = subprocess.call(command, shell=True, stdout=None)
command = "ffmpeg -i %s %s ;" % (
os.path.join(video_args.pyaviPath, 'video_out_%s.avi' % tidx),
os.path.join(video_args.pyaviPath, 'video_est_%s.mp4' % tidx)
)
command += f"rm {os.path.join(video_args.pyaviPath, 'video_out_%s.avi' % tidx)}"
output = subprocess.call(command, shell=True, stdout=None)
command = "ffmpeg -i %s %s ;" % (
os.path.join(video_args.pyaviPath, 'video.avi'),
os.path.join(video_args.pyaviPath, 'video_orig.mp4')
)
command += f"rm {os.path.join(video_args.pyaviPath, 'video_only.avi')} ;"
command += f"rm {os.path.join(video_args.pyaviPath, 'video.avi')} ;"
command += f"rm {os.path.join(video_args.pyaviPath, 'audio.wav')} ;"
output = subprocess.call(command, shell=True, stdout=None)
|