alexkueck commited on
Commit
ede8fc0
·
1 Parent(s): 2d98523

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +5 -4
app.py CHANGED
@@ -10,6 +10,7 @@ import time
10
 
11
  from langchain.chains import LLMChain, RetrievalQA
12
  from langchain.chat_models import ChatOpenAI
 
13
  from langchain.document_loaders import PyPDFLoader, WebBaseLoader, UnstructuredWordDocumentLoader, DirectoryLoader
14
  from langchain.document_loaders.blob_loaders.youtube_audio import YoutubeAudioLoader
15
  from langchain.document_loaders.generic import GenericLoader
@@ -186,7 +187,7 @@ def document_storage_chroma(splits):
186
 
187
  #Vektorstore vorbereiten...
188
  #dokumente in chroma db vektorisiert ablegen können - die Db vorbereiten daüfur
189
- def document_retrieval_chroma():
190
  #OpenAI embeddings -------------------------------
191
  embeddings = OpenAIEmbeddings()
192
 
@@ -199,8 +200,8 @@ def document_retrieval_chroma():
199
  #ChromaDb um die embedings zu speichern
200
  db = Chroma(embedding_function = embeddings, persist_directory = PATH_WORK + CHROMA_DIR)
201
  print ("Chroma DB bereit ...................")
202
- llm = OpenAI(temperature=0.5)
203
- retriever = SelfQueryRetriever.from_llm(llm,vectorstore,document_content_description,metadata_field_info,enable_limit=True,verbose=True,)
204
 
205
  return db, retriever
206
 
@@ -280,7 +281,7 @@ def generate(text, history, rag_option, model_option, temperature=0.5, max_new_
280
  if not splittet:
281
  splits = document_loading_splitting()
282
  document_storage_chroma(splits)
283
- db, retriever = document_retrieval_chroma()
284
  #mit RAG:
285
  neu_text_mit_chunks = rag_chain(text, db, retriever)
286
  #für Chat LLM:
 
10
 
11
  from langchain.chains import LLMChain, RetrievalQA
12
  from langchain.chat_models import ChatOpenAI
13
+ from langchain.retrievers.self_query.base import SelfQueryRetriever
14
  from langchain.document_loaders import PyPDFLoader, WebBaseLoader, UnstructuredWordDocumentLoader, DirectoryLoader
15
  from langchain.document_loaders.blob_loaders.youtube_audio import YoutubeAudioLoader
16
  from langchain.document_loaders.generic import GenericLoader
 
187
 
188
  #Vektorstore vorbereiten...
189
  #dokumente in chroma db vektorisiert ablegen können - die Db vorbereiten daüfur
190
+ def document_retrieval_chroma(prompt):
191
  #OpenAI embeddings -------------------------------
192
  embeddings = OpenAIEmbeddings()
193
 
 
200
  #ChromaDb um die embedings zu speichern
201
  db = Chroma(embedding_function = embeddings, persist_directory = PATH_WORK + CHROMA_DIR)
202
  print ("Chroma DB bereit ...................")
203
+ llm = ChatOpenAI(temperature=0.5)
204
+ retriever = SelfQueryRetriever.from_llm(llm,vectorstore,document_content_description=prompt,metadata_field_info,enable_limit=True,verbose=True,)
205
 
206
  return db, retriever
207
 
 
281
  if not splittet:
282
  splits = document_loading_splitting()
283
  document_storage_chroma(splits)
284
+ db, retriever = document_retrieval_chroma(text)
285
  #mit RAG:
286
  neu_text_mit_chunks = rag_chain(text, db, retriever)
287
  #für Chat LLM: