File size: 10,737 Bytes
1454959
 
 
 
 
3873f09
1454959
 
 
 
 
 
 
 
 
 
 
 
 
 
 
68d64b6
 
 
 
 
 
 
 
 
 
 
1454959
2167e1f
 
 
1454959
2167e1f
1454959
 
68d64b6
1454959
 
 
2167e1f
68d64b6
1454959
68d64b6
 
 
 
 
 
 
 
 
 
1454959
 
 
68d64b6
 
 
 
 
 
 
 
 
 
 
e4acbfd
 
3873f09
e4acbfd
3873f09
 
 
 
1454959
2167e1f
1454959
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2167e1f
1454959
68d64b6
 
 
 
 
 
 
 
 
 
 
1454959
e4acbfd
 
3873f09
e4acbfd
3873f09
 
 
2167e1f
1454959
 
 
 
2167e1f
1454959
68d64b6
 
 
 
 
3873f09
68d64b6
 
 
 
e4acbfd
 
 
3873f09
 
1454959
2167e1f
 
 
 
 
 
 
 
 
1454959
2167e1f
1454959
 
68d64b6
 
 
 
1454959
 
 
 
 
 
 
 
 
 
2167e1f
68d64b6
2167e1f
 
68d64b6
 
 
 
2167e1f
68d64b6
2167e1f
1454959
 
 
68d64b6
 
1454959
 
 
68d64b6
 
 
 
 
1454959
68d64b6
 
 
1454959
68d64b6
 
 
1454959
68d64b6
 
 
 
 
2167e1f
1454959
 
 
 
68d64b6
1454959
 
 
 
2167e1f
1454959
 
68d64b6
1454959
 
2167e1f
1454959
 
68d64b6
1454959
68d64b6
1454959
68d64b6
 
 
1454959
 
 
 
 
 
 
 
68d64b6
2167e1f
 
 
68d64b6
3873f09
1454959
 
 
 
68d64b6
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
import numpy as np
import pandas as pd
import openai
import spotipy
import pickle
import os

from sklearn.cluster import KMeans
from sklearn.preprocessing import StandardScaler
from sklearn.pipeline import Pipeline
from sklearn.manifold import TSNE
from sklearn.decomposition import PCA
from sklearn.metrics import euclidean_distances
from scipy.spatial.distance import cdist
from spotipy.oauth2 import SpotifyClientCredentials
from collections import defaultdict


import warnings
warnings.filterwarnings("ignore")

def feature_get_pipeline_data_column_names():
    """
    Reads data from a CSV file, performs K-means clustering on numeric columns,
    and assigns cluster labels to the data.

    Returns:
    - song_cluster_pipeline: Pipeline object containing the scaler and K-means model.
    - data: DataFrame with the original data and cluster labels.
    - feature_column_names: List of column names containing numeric values.
    """
    
    data = pd.read_csv("data/data.csv")

    song_cluster_pipeline = Pipeline([('scaler', StandardScaler()),
                                      ('kmeans', KMeans(n_clusters=20,
                                       verbose=False))
                                      ], verbose=False)

    X = data.select_dtypes(np.number)
    feature_column_names = list(X.columns)
    song_cluster_pipeline.fit(X)
    song_cluster_labels = song_cluster_pipeline.predict(X)
    data['cluster_label'] = song_cluster_labels

    return song_cluster_pipeline, data, feature_column_names

def get_model_values(data_path, file_path, cluster_path):
    
    with open(file_path, 'rb') as file:
        loaded_pipeline = pickle.load(file)
    data = pd.read_csv(data_path)
    labels = pd.read_csv(cluster_path)
    data["cluster_label"] = labels["cluster_label"]
    feature_column_names = ['valence', 'year', 'acousticness', 'danceability', 'duration_ms', 'energy', 'explicit',
                   'instrumentalness', 'key', 'liveness', 'loudness', 'mode', 'popularity', 'speechiness', 'tempo']
    return loaded_pipeline, data, feature_column_names


def find_song(name, year):
    """
    Finds a song on Spotify based on the song name and year.

    Args:
    - name: Name of the song.
    - year: Year of the song.

    Returns:
    - DataFrame containing the song's data.
    """
    
    if os.path.isfile(".\secret_keys.py"):
        import secret_keys
        sp = spotipy.Spotify(auth_manager=SpotifyClientCredentials(
            client_id=secret_keys.client_id, client_secret=secret_keys.client_secret))
    else:
        sp = spotipy.Spotify(auth_manager=SpotifyClientCredentials(
            client_id=os.environ.get("client_id"), client_secret=os.environ.get("client_secret")))

    song_data = defaultdict()
    results = sp.search(q='track: {} year: {}'.format(name, year), limit=1)
    if results['tracks']['items'] == []:
        return None

    results = results['tracks']['items'][0]
    track_id = results['id']
    audio_features = sp.audio_features(track_id)[0]
    song_data['name'] = [name]
    song_data['year'] = [year]
    song_data['explicit'] = [int(results['explicit'])]
    song_data['duration_ms'] = [results['duration_ms']]
    song_data['popularity'] = [results['popularity']]

    for key, value in audio_features.items():
        song_data[key] = value

    return pd.DataFrame(song_data)


def find_song_uri(name, year):
    """
    Finds the Spotify URI of a song based on the song name and year.

    Args:
    - name: Name of the song.
    - year: Year of the song.

    Returns:
    - Spotify URI of the song.
    """
    
    # Create a Spotify client object.
    if os.path.isfile(".\secret_keys.py"):
        import secret_keys
        client = spotipy.Spotify(auth_manager=SpotifyClientCredentials(
            client_id=secret_keys.client_id, client_secret=secret_keys.client_secret))
    else:
        client = spotipy.Spotify(auth_manager=SpotifyClientCredentials(
            client_id=os.environ.get("client_id"), client_secret=os.environ.get("client_secret")))
    results = client.search(q='track: {} year: {}'.format(name, year), limit=1)
    track = results['tracks']['items'][0]
    song_id = track['uri']
    return song_id


def get_response(text):
    """
    Retrieves a response using OpenAI's GPT-3 language model.

    Args:
    - input_text: The input text for the model.

    Returns:
    - Generated response as a string.
    """
    
    if os.path.isfile(".\secret_keys.py"):
        import secret_keys
        openai.api_key = secret_keys.openai_api_key
    else:
        openai.api_key = os.environ.get("openai_api_key")

    response = openai.Completion.create(
        model="text-davinci-003",
        prompt=text,
        temperature=0.7,
        max_tokens=128,
        top_p=1,
        frequency_penalty=0,
        presence_penalty=0
    )

    return response.choices[0].get("text")


def get_finetune_text(user_critic, list_song_data):
    init_text = "I want you to act as a song recommender. I will provide you songs data with following format future_columns=[ <valence>, <published_year>, <acousticness>, <danceability>, <duration_ms>, <energy>, <explicit>,<instrumentalness>, <key>, <liveness>, <loudness>, <mode>, <popularity>, <speechiness>, <tempo>] \
     values and user critic about the given song. And you will change given array values based on user critic and return result array. Do not write any explanations or other words, just return an array that include changes in future_columns\
    and here is the np.describe() values of future_columns  \n\
    valence	year	acousticness	danceability	duration_ms	energy	explicit	instrumentalness	key	liveness	loudness	mode	popularity	speechiness	tempo \n \
    count	170653	170653	170653	170653	170653	170653	170653	170653	170653	170653	170653	170653	170653	170653	170653 \n \
    mean	0.528587211	1976.787241	0.502114764	0.537395535	230948.3107	0.482388835	0.084575132	0.167009581	5.199844128	0.205838655	-11.46799004	0.706902311	31.43179434	0.098393262	116.8615896 \n \
    std	0.263171464	25.91785256	0.376031725	0.176137736	126118.4147	0.267645705	0.278249228	0.313474674	3.515093906	0.174804661	5.697942912	0.455184191	21.82661514	0.162740072	30.70853304 \n \
    min	0	1921	0	0	5108	0	0	0	0	0	-60	0	0	0	0 \n \
    25%	0.317	1956	0.102	0.415	169827	0.255	0	0	2	0.0988	-14.615	0	11	0.0349	93.421 \n \
    50%	0.54	1977	0.516	0.548	207467	0.471	0	0.000216	5	0.136	-10.58	1	33	0.045	114.729 \n \
    75%	0.747	1999	0.893	0.668	262400	0.703	0	0.102	8	0.261	-7.183	1	48	0.0756	135.537 \n \
    max	1	2020	0.996	0.988	5403500	1	1	1	11	1	3.855	1	100	0.97	243.507"

    # init_last = "\n\n start with only typing random  future_columns values in given range as a array"
    # user_critic_example = "\n \"user_critic=it was too old and loud but i like the energy\" "
    # example_features = "future_columns=[0.68, 1976, 0.78, 0.62, 230948.3, 0.44, 0.22, 0.43, 5.2, 0.27, -9.67, 1, 31, 0.19, 118.86]"
    # test_input = init_text + user_last + user_critic + example_features + user_critic_last
    
    user_critic_last = "your output will be future_columns=[ <valence>, <published_year>, <acousticness>, <danceability>, <duration_ms>, <energy>, <explicit>,<instrumentalness>, <key>, <liveness>, <loudness>, <mode>, <popularity>, <speechiness>, <tempo>]  format"
    user_last = "\n\n start with the adjust following future_columns based on user_critic. "
    features = "future_columns=" + list_song_data
    real_input = init_text + user_last + \
        user_critic + features + user_critic_last

    return real_input


def format_gpt_output(raw_recommendation_array):
    formatted = raw_recommendation_array[3:-1].split(",")
    list_song_data = [float(i) for i in formatted]
    return list_song_data

def format_song_string(song_data, feature_column_names):
    list_song_data = song_data[feature_column_names].values.tolist()[0]
    list_song_data = '[' + ', '.join([str(num)
                                     for num in list_song_data]) + ']'
    return list_song_data

def format_chatgpt_recommendations(song_list, spotify_data, song_cluster_pipeline, n_songs=15):
    """
    Recommends a song using OpenAI's GPT-3 language model.

    Args:
    - song_name: The name of the song.
    - song_year: The year of the song.

    Returns:
    - Recommended song as a list of string.
    """
    
    feature_column_names = ['valence', 'year', 'acousticness', 'danceability', 'duration_ms', 'energy', 'explicit',
                   'instrumentalness', 'key', 'liveness', 'loudness', 'mode', 'popularity', 'speechiness', 'tempo']

    metadata_cols = ['name', 'year', 'artists']
    song_center = np.array(song_list)
    scaler = song_cluster_pipeline.steps[0][1]
    scaled_data = scaler.transform(spotify_data[feature_column_names])
    scaled_song_center = scaler.transform(song_center.reshape(1, -1))
    distances = cdist(scaled_song_center, scaled_data, 'cosine')
    index = list(np.argsort(distances)[:, :n_songs][0])
    rec_songs = spotify_data.iloc[index]
    # rec_songs = rec_songs[~rec_songs['name'].isin(song_dict['name'])]
    return rec_songs[metadata_cols].to_dict(orient='records')

def get_recommendation_song_uri(res):
    song_spotipy_info = []
    for song in res:
        song_spotipy_info.append(find_song_uri(song["name"], song["year"]))
    return song_spotipy_info

def get_recommendation_array(song_name, song_year, feature_column_names, user_critic_text):
    song_data = find_song(song_name, song_year)
    list_song_data = format_song_string(song_data, feature_column_names)
    user_critic = "\n \"user_critic=" + user_critic_text
    recommendation = get_response(get_finetune_text(user_critic, list_song_data))
    raw_recommendation_array = format_gpt_output(recommendation)
    return raw_recommendation_array


def get_random_song():
    data = pd.read_csv("data/data.csv")
    sample = data.sample(n=1)
    return sample.name, sample.year

def control():
    # song_cluster_pipeline, data, feature_column_names = feature_get_pipeline_data_column_names()
    data_path = "data/data.csv"
    file_path = "data/pipeline.pkl"
    cluster_labels = "data/cluster_labels.csv"
    song_cluster_pipeline, data, feature_column_names = get_model_values(
        data_path, file_path, cluster_labels)

    user_critic_text = "it was dull and very loud"
    song_name = "Poem of a Killer"
    song_year = 2022
    raw_recommendation_array = get_recommendation_array(
        song_name, song_year, feature_column_names, user_critic_text)
    
    result = format_chatgpt_recommendations(raw_recommendation_array, data, song_cluster_pipeline)
    print(result, get_recommendation_song_uri(result))

if __name__ == "__main__":
    control()