alaahilal's picture
streamlit file created
6a6b0ee verified
import streamlit as st
from ultralytics import YOLO
import cv2
import time
import numpy as np
import torch
from PIL import Image
import tempfile
import warnings
warnings.filterwarnings('ignore')
def get_direction(old_center, new_center, min_movement=10):
if old_center is None or new_center is None:
return "stationary"
dx = new_center[0] - old_center[0]
dy = new_center[1] - old_center[1]
if abs(dx) < min_movement and abs(dy) < min_movement:
return "stationary"
if abs(dx) > abs(dy):
return "right" if dx > 0 else "left"
else:
return "down" if dy > 0 else "up"
class ObjectTracker:
def __init__(self):
self.tracked_objects = {}
self.object_count = {}
def update(self, detections):
current_objects = {}
results = []
for detection in detections:
x1, y1, x2, y2 = detection[0:4]
center = ((x1 + x2) // 2, (y1 + y2) // 2)
class_id = detection[5]
object_id = f"{class_id}_{len(self.object_count.get(class_id, []))}"
min_dist = float('inf')
closest_id = None
for prev_id, prev_data in self.tracked_objects.items():
if prev_id.split('_')[0] == str(class_id):
dist = np.sqrt((center[0] - prev_data['center'][0])**2 +
(center[1] - prev_data['center'][1])**2)
if dist < min_dist and dist < 100:
min_dist = dist
closest_id = prev_id
if closest_id:
object_id = closest_id
else:
if class_id not in self.object_count:
self.object_count[class_id] = []
self.object_count[class_id].append(object_id)
prev_center = self.tracked_objects.get(object_id, {}).get('center', None)
direction = get_direction(prev_center, center)
current_objects[object_id] = {
'center': center,
'direction': direction,
'detection': detection
}
results.append((detection, object_id, direction))
self.tracked_objects = current_objects
return results
def main():
st.title("Real-time Object Detection with Direction")
# File uploader for video
uploaded_file = st.file_uploader("Choose a video file", type=['mp4', 'avi', 'mov'])
# Add start button
start_detection = st.button("Start Detection")
# Add stop button
stop_detection = st.button("Stop Detection")
if uploaded_file is not None and start_detection:
# Create a session state to track if detection is running
if 'running' not in st.session_state:
st.session_state.running = True
# Save uploaded file temporarily
tfile = tempfile.NamedTemporaryFile(delete=False)
tfile.write(uploaded_file.read())
# Load model
with st.spinner('Loading model...'):
model = YOLO('yolov8x.pt',verbose=False)
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
model.to(device)
tracker = ObjectTracker()
cap = cv2.VideoCapture(tfile.name)
direction_colors = {
"left": (255, 0, 0),
"right": (0, 255, 0),
"up": (0, 255, 255),
"down": (0, 0, 255),
"stationary": (128, 128, 128)
}
# Create placeholder for video frame
frame_placeholder = st.empty()
# Create placeholder for detection info
info_placeholder = st.empty()
st.success("Detection Started!")
while cap.isOpened() and st.session_state.running:
success, frame = cap.read()
if not success:
break
# Run detection
results = model(frame,
conf=0.25,
iou=0.45,
max_det=20,
verbose=False)[0]
detections = []
for box in results.boxes.data:
x1, y1, x2, y2, conf, cls = box.tolist()
detections.append([int(x1), int(y1), int(x2), int(y2), float(conf), int(cls)])
tracked_objects = tracker.update(detections)
# Dictionary to store detection counts
detection_counts = {}
for detection, obj_id, direction in tracked_objects:
x1, y1, x2, y2, conf, cls = detection
color = direction_colors.get(direction, (128, 128, 128))
cv2.rectangle(frame, (int(x1), int(y1)), (int(x2), int(y2)), color, 2)
label = f"{model.names[int(cls)]} {direction} {conf:.2f}"
# Increased font size and thickness
font_scale = 1.2
thickness = 3
text_size = cv2.getTextSize(label, cv2.FONT_HERSHEY_SIMPLEX, font_scale, thickness)[0]
# Increased padding for label background
padding_y = 15
cv2.rectangle(frame,
(int(x1), int(y1) - text_size[1] - padding_y),
(int(x1) + text_size[0], int(y1)),
color, -1)
cv2.putText(frame, label,
(int(x1), int(y1) - 5),
cv2.FONT_HERSHEY_SIMPLEX,
font_scale,
(255, 255, 255),
thickness)
# Count detections by class
class_name = model.names[int(cls)]
detection_counts[class_name] = detection_counts.get(class_name, 0) + 1
# Convert BGR to RGB
frame_rgb = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
# Update frame
frame_placeholder.image(frame_rgb, channels="RGB", use_column_width=True)
# Update detection info
info_text = "Detected Objects:\n"
for class_name, count in detection_counts.items():
info_text += f"{class_name}: {count}\n"
info_placeholder.text(info_text)
# Check if stop button is pressed
if stop_detection:
st.session_state.running = False
break
cap.release()
st.session_state.running = False
st.warning("Detection Stopped")
elif uploaded_file is None and start_detection:
st.error("Please upload a video file first!")
if __name__ == "__main__":
main()