Spaces:
Running
Running
import os | |
# Setting environment variables | |
os.environ["TF_ENABLE_ONEDNN_OPTS"] = "0" | |
os.environ["KERAS_BACKEND"] = "jax" | |
import streamlit as st | |
import cv2 | |
import numpy as np | |
from PIL import Image | |
import keras | |
import warnings | |
warnings.filterwarnings("ignore") | |
def resize_for_inference(input_image): | |
# Convert uploaded image to NumPy array | |
image = np.array(input_image) | |
# Convert the image to RGB format (for compatibility with GrabCut) | |
image_rgb = cv2.cvtColor(image, cv2.COLOR_BGR2RGB) | |
# Initialize the mask for GrabCut | |
mask = np.zeros(image.shape[:2], np.uint8) | |
# Define the rectangle for the GrabCut algorithm | |
height, width = image.shape[:2] | |
rect = (10, 10, width - 20, height - 20) # Slightly smaller than the full image | |
# Allocate memory for the GrabCut algorithm | |
bgd_model = np.zeros((1, 65), np.float64) | |
fgd_model = np.zeros((1, 65), np.float64) | |
# Apply the GrabCut algorithm | |
cv2.grabCut(image_rgb, mask, rect, bgd_model, fgd_model, 5, cv2.GC_INIT_WITH_RECT) | |
# Convert the mask to binary (foreground is white, background is black) | |
binary_mask = np.where((mask == 2) | (mask == 0), 0, 255).astype('uint8') | |
# Resize the binary mask to the desired shape (960x720) | |
resized_mask = cv2.resize(binary_mask, (720, 960), interpolation=cv2.INTER_AREA) | |
# Further resize the mask to target size (224x224) | |
target_size = (224, 224) | |
final_resized_mask = cv2.resize(resized_mask, target_size, interpolation=cv2.INTER_AREA) | |
final_resized_mask = np.expand_dims(final_resized_mask, axis=-1) | |
return final_resized_mask | |
# Streamlit UI | |
st.title("Body Measurement Predictor") | |
st.write("Upload an image to predict body measurements.") | |
uploaded_image = st.file_uploader("Choose an image...", type=["jpg", "jpeg", "png"]) | |
# Check if the model is already loaded in the session state | |
if 'loaded_model' not in st.session_state: | |
with st.spinner("Model is getting loaded. Please wait..."): | |
try: | |
# Load the pre-trained model only once | |
st.session_state.loaded_model = keras.saving.load_model("hf://datasciencesage/bodym_measurement_model") | |
st.success("Model loaded successfully!") | |
except Exception as e: | |
st.error(f"Error loading model: {e}") | |
# Show the image upload box immediately | |
if uploaded_image is not None: | |
# Display the uploaded image | |
image = Image.open(uploaded_image) | |
st.image(image, caption="Uploaded Image", use_column_width=True) | |
# Preprocess the image and make predictions using the pre-loaded model | |
with st.spinner("DOING IMAGE PREPROCESSING.....PLEASE WAIT..."): | |
resized_image = resize_for_inference(image) | |
single_image_expanded = np.expand_dims(resized_image, axis=0) | |
# Make predictions using the loaded model | |
with st.spinner("INFERENCE IS BEING DONE.....PLEASE WAIT..."): | |
single_image_expanded = np.expand_dims(resized_image, axis=0) | |
# Make predictions using the loaded model | |
predicted_values = st.session_state.loaded_model.predict(single_image_expanded)[0] | |
columns = ['ankle', 'arm-length', 'bicep', 'calf', 'chest', | |
'forearm', 'height', 'hip', 'leg-length', 'shoulder-breadth', | |
'shoulder-to-crotch', 'thigh', 'waist', 'wrist'] | |
# Display the results | |
st.write("Predicted Body Measurements:") | |
for body_type, measurement in zip(columns, predicted_values): | |
st.write(f"{body_type}: {measurement:.2f} cm") | |