alaahilal's picture
updated the file
1547048 verified
import os
# Setting environment variables
os.environ["TF_ENABLE_ONEDNN_OPTS"] = "0"
os.environ["KERAS_BACKEND"] = "jax"
import streamlit as st
import cv2
import numpy as np
from PIL import Image
import keras
import warnings
warnings.filterwarnings("ignore")
def resize_for_inference(input_image):
# Convert uploaded image to NumPy array
image = np.array(input_image)
# Convert the image to RGB format (for compatibility with GrabCut)
image_rgb = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
# Initialize the mask for GrabCut
mask = np.zeros(image.shape[:2], np.uint8)
# Define the rectangle for the GrabCut algorithm
height, width = image.shape[:2]
rect = (10, 10, width - 20, height - 20) # Slightly smaller than the full image
# Allocate memory for the GrabCut algorithm
bgd_model = np.zeros((1, 65), np.float64)
fgd_model = np.zeros((1, 65), np.float64)
# Apply the GrabCut algorithm
cv2.grabCut(image_rgb, mask, rect, bgd_model, fgd_model, 5, cv2.GC_INIT_WITH_RECT)
# Convert the mask to binary (foreground is white, background is black)
binary_mask = np.where((mask == 2) | (mask == 0), 0, 255).astype('uint8')
# Resize the binary mask to the desired shape (960x720)
resized_mask = cv2.resize(binary_mask, (720, 960), interpolation=cv2.INTER_AREA)
# Further resize the mask to target size (224x224)
target_size = (224, 224)
final_resized_mask = cv2.resize(resized_mask, target_size, interpolation=cv2.INTER_AREA)
final_resized_mask = np.expand_dims(final_resized_mask, axis=-1)
return final_resized_mask
# Streamlit UI
st.title("Body Measurement Predictor")
st.write("Upload an image to predict body measurements.")
uploaded_image = st.file_uploader("Choose an image...", type=["jpg", "jpeg", "png"])
# Check if the model is already loaded in the session state
if 'loaded_model' not in st.session_state:
with st.spinner("Model is getting loaded. Please wait..."):
try:
# Load the pre-trained model only once
st.session_state.loaded_model = keras.saving.load_model("hf://datasciencesage/bodym_measurement_model")
st.success("Model loaded successfully!")
except Exception as e:
st.error(f"Error loading model: {e}")
# Show the image upload box immediately
if uploaded_image is not None:
# Display the uploaded image
image = Image.open(uploaded_image)
st.image(image, caption="Uploaded Image", use_column_width=True)
# Preprocess the image and make predictions using the pre-loaded model
with st.spinner("DOING IMAGE PREPROCESSING.....PLEASE WAIT..."):
resized_image = resize_for_inference(image)
single_image_expanded = np.expand_dims(resized_image, axis=0)
# Make predictions using the loaded model
with st.spinner("INFERENCE IS BEING DONE.....PLEASE WAIT..."):
single_image_expanded = np.expand_dims(resized_image, axis=0)
# Make predictions using the loaded model
predicted_values = st.session_state.loaded_model.predict(single_image_expanded)[0]
columns = ['ankle', 'arm-length', 'bicep', 'calf', 'chest',
'forearm', 'height', 'hip', 'leg-length', 'shoulder-breadth',
'shoulder-to-crotch', 'thigh', 'waist', 'wrist']
# Display the results
st.write("Predicted Body Measurements:")
for body_type, measurement in zip(columns, predicted_values):
st.write(f"{body_type}: {measurement:.2f} cm")