# -*- coding: utf-8 -*- """MidashNet: Network for monocular depth estimation trained by mixing several datasets. This file contains code that is adapted from https://github.com/thomasjpfan/pytorch_refinenet/blob/master/pytorch_refinenet/refinenet/refinenet_4cascade.py """ import torch import torch.nn as nn from .base_model import BaseModel from .blocks import FeatureFusionBlock_custom, Interpolate, _make_encoder class MidasNet_small(BaseModel): """Network for monocular depth estimation. """ def __init__(self, path=None, features=64, backbone='efficientnet_lite3', non_negative=True, exportable=True, channels_last=False, align_corners=True, blocks={'expand': True}): """Init. Args: path (str, optional): Path to saved model. Defaults to None. features (int, optional): Number of features. Defaults to 256. backbone (str, optional): Backbone network for encoder. Defaults to resnet50 """ print('Loading weights: ', path) super(MidasNet_small, self).__init__() use_pretrained = False if path else True self.channels_last = channels_last self.blocks = blocks self.backbone = backbone self.groups = 1 features1 = features features2 = features features3 = features features4 = features self.expand = False if 'expand' in self.blocks and self.blocks['expand'] is True: self.expand = True features1 = features features2 = features * 2 features3 = features * 4 features4 = features * 8 self.pretrained, self.scratch = _make_encoder(self.backbone, features, use_pretrained, groups=self.groups, expand=self.expand, exportable=exportable) self.scratch.activation = nn.ReLU(False) self.scratch.refinenet4 = FeatureFusionBlock_custom( features4, self.scratch.activation, deconv=False, bn=False, expand=self.expand, align_corners=align_corners) self.scratch.refinenet3 = FeatureFusionBlock_custom( features3, self.scratch.activation, deconv=False, bn=False, expand=self.expand, align_corners=align_corners) self.scratch.refinenet2 = FeatureFusionBlock_custom( features2, self.scratch.activation, deconv=False, bn=False, expand=self.expand, align_corners=align_corners) self.scratch.refinenet1 = FeatureFusionBlock_custom( features1, self.scratch.activation, deconv=False, bn=False, align_corners=align_corners) self.scratch.output_conv = nn.Sequential( nn.Conv2d(features, features // 2, kernel_size=3, stride=1, padding=1, groups=self.groups), Interpolate(scale_factor=2, mode='bilinear'), nn.Conv2d(features // 2, 32, kernel_size=3, stride=1, padding=1), self.scratch.activation, nn.Conv2d(32, 1, kernel_size=1, stride=1, padding=0), nn.ReLU(True) if non_negative else nn.Identity(), nn.Identity(), ) if path: self.load(path) def forward(self, x): """Forward pass. Args: x (tensor): input data (image) Returns: tensor: depth """ if self.channels_last is True: print('self.channels_last = ', self.channels_last) x.contiguous(memory_format=torch.channels_last) layer_1 = self.pretrained.layer1(x) layer_2 = self.pretrained.layer2(layer_1) layer_3 = self.pretrained.layer3(layer_2) layer_4 = self.pretrained.layer4(layer_3) layer_1_rn = self.scratch.layer1_rn(layer_1) layer_2_rn = self.scratch.layer2_rn(layer_2) layer_3_rn = self.scratch.layer3_rn(layer_3) layer_4_rn = self.scratch.layer4_rn(layer_4) path_4 = self.scratch.refinenet4(layer_4_rn) path_3 = self.scratch.refinenet3(path_4, layer_3_rn) path_2 = self.scratch.refinenet2(path_3, layer_2_rn) path_1 = self.scratch.refinenet1(path_2, layer_1_rn) out = self.scratch.output_conv(path_1) return torch.squeeze(out, dim=1) def fuse_model(m): prev_previous_type = nn.Identity() prev_previous_name = '' previous_type = nn.Identity() previous_name = '' for name, module in m.named_modules(): if prev_previous_type == nn.Conv2d and previous_type == nn.BatchNorm2d and type( module) == nn.ReLU: # print("FUSED ", prev_previous_name, previous_name, name) torch.quantization.fuse_modules( m, [prev_previous_name, previous_name, name], inplace=True) elif prev_previous_type == nn.Conv2d and previous_type == nn.BatchNorm2d: # print("FUSED ", prev_previous_name, previous_name) torch.quantization.fuse_modules( m, [prev_previous_name, previous_name], inplace=True) # elif previous_type == nn.Conv2d and type(module) == nn.ReLU: # print("FUSED ", previous_name, name) # torch.quantization.fuse_modules(m, [previous_name, name], inplace=True) prev_previous_type = previous_type prev_previous_name = previous_name previous_type = type(module) previous_name = name