# -*- coding: utf-8 -*- # Copyright (c) Alibaba, Inc. and its affiliates. # Please use this implementation in your products # This implementation may produce slightly different results from Saining Xie's official implementations, # but it generates smoother edges and is more suitable for ControlNet as well as other image-to-image translations. # Different from official models and other implementations, this is an RGB-input model (rather than BGR) # and in this way it works better for gradio's RGB protocol from abc import ABCMeta import cv2 import numpy as np import torch from einops import rearrange from scepter.modules.annotator.base_annotator import BaseAnnotator from scepter.modules.annotator.registry import ANNOTATORS from scepter.modules.utils.config import dict_to_yaml from scepter.modules.utils.distribute import we from scepter.modules.utils.file_system import FS def nms(x, t, s): x = cv2.GaussianBlur(x.astype(np.float32), (0, 0), s) f1 = np.array([[0, 0, 0], [1, 1, 1], [0, 0, 0]], dtype=np.uint8) f2 = np.array([[0, 1, 0], [0, 1, 0], [0, 1, 0]], dtype=np.uint8) f3 = np.array([[1, 0, 0], [0, 1, 0], [0, 0, 1]], dtype=np.uint8) f4 = np.array([[0, 0, 1], [0, 1, 0], [1, 0, 0]], dtype=np.uint8) y = np.zeros_like(x) for f in [f1, f2, f3, f4]: np.putmask(y, cv2.dilate(x, kernel=f) == x, x) z = np.zeros_like(y, dtype=np.uint8) z[y > t] = 255 return z class DoubleConvBlock(torch.nn.Module): def __init__(self, input_channel, output_channel, layer_number): super().__init__() self.convs = torch.nn.Sequential() self.convs.append( torch.nn.Conv2d(in_channels=input_channel, out_channels=output_channel, kernel_size=(3, 3), stride=(1, 1), padding=1)) for i in range(1, layer_number): self.convs.append( torch.nn.Conv2d(in_channels=output_channel, out_channels=output_channel, kernel_size=(3, 3), stride=(1, 1), padding=1)) self.projection = torch.nn.Conv2d(in_channels=output_channel, out_channels=1, kernel_size=(1, 1), stride=(1, 1), padding=0) def __call__(self, x, down_sampling=False): h = x if down_sampling: h = torch.nn.functional.max_pool2d(h, kernel_size=(2, 2), stride=(2, 2)) for conv in self.convs: h = conv(h) h = torch.nn.functional.relu(h) return h, self.projection(h) class ControlNetHED_Apache2(torch.nn.Module): def __init__(self): super().__init__() self.norm = torch.nn.Parameter(torch.zeros(size=(1, 3, 1, 1))) self.block1 = DoubleConvBlock(input_channel=3, output_channel=64, layer_number=2) self.block2 = DoubleConvBlock(input_channel=64, output_channel=128, layer_number=2) self.block3 = DoubleConvBlock(input_channel=128, output_channel=256, layer_number=3) self.block4 = DoubleConvBlock(input_channel=256, output_channel=512, layer_number=3) self.block5 = DoubleConvBlock(input_channel=512, output_channel=512, layer_number=3) def __call__(self, x): h = x - self.norm h, projection1 = self.block1(h) h, projection2 = self.block2(h, down_sampling=True) h, projection3 = self.block3(h, down_sampling=True) h, projection4 = self.block4(h, down_sampling=True) h, projection5 = self.block5(h, down_sampling=True) return projection1, projection2, projection3, projection4, projection5 @ANNOTATORS.register_class() class HedAnnotator(BaseAnnotator, metaclass=ABCMeta): para_dict = {} def __init__(self, cfg, logger=None): super().__init__(cfg, logger=logger) self.netNetwork = ControlNetHED_Apache2().float().eval() pretrained_model = cfg.get('PRETRAINED_MODEL', None) if pretrained_model: with FS.get_from(pretrained_model, wait_finish=True) as local_path: self.netNetwork.load_state_dict(torch.load(local_path)) @torch.no_grad() @torch.inference_mode() @torch.autocast('cuda', enabled=False) def forward(self, image): if isinstance(image, torch.Tensor): if len(image.shape) == 3: image = rearrange(image, 'h w c -> 1 c h w') B, C, H, W = image.shape else: raise "Unsurpport input image's shape" elif isinstance(image, np.ndarray): image = torch.from_numpy(image.copy()).float() if len(image.shape) == 3: image = rearrange(image, 'h w c -> 1 c h w') B, C, H, W = image.shape else: raise "Unsurpport input image's shape" else: raise "Unsurpport input image's type" edges = self.netNetwork(image.to(we.device_id)) edges = [ e.detach().cpu().numpy().astype(np.float32)[0, 0] for e in edges ] edges = [ cv2.resize(e, (W, H), interpolation=cv2.INTER_LINEAR) for e in edges ] edges = np.stack(edges, axis=2) edge = 1 / (1 + np.exp(-np.mean(edges, axis=2).astype(np.float64))) edge = 255 - (edge * 255.0).clip(0, 255).astype(np.uint8) return edge[..., None].repeat(3, 2) @staticmethod def get_config_template(): return dict_to_yaml('ANNOTATORS', __class__.__name__, HedAnnotator.para_dict, set_name=True)