# -*- coding: utf-8 -*- # modified by lihaoweicv # pytorch version # # M-LSD # Copyright 2021-present NAVER Corp. # Apache License v2.0 import cv2 import numpy as np import torch from torch.nn import functional as F def deccode_output_score_and_ptss(tpMap, topk_n=200, ksize=5): ''' tpMap: center: tpMap[1, 0, :, :] displacement: tpMap[1, 1:5, :, :] ''' b, c, h, w = tpMap.shape assert b == 1, 'only support bsize==1' displacement = tpMap[:, 1:5, :, :][0] center = tpMap[:, 0, :, :] heat = torch.sigmoid(center) hmax = F.max_pool2d(heat, (ksize, ksize), stride=1, padding=(ksize - 1) // 2) keep = (hmax == heat).float() heat = heat * keep heat = heat.reshape(-1, ) scores, indices = torch.topk(heat, topk_n, dim=-1, largest=True) yy = torch.floor_divide(indices, w).unsqueeze(-1) xx = torch.fmod(indices, w).unsqueeze(-1) ptss = torch.cat((yy, xx), dim=-1) ptss = ptss.detach().cpu().numpy() scores = scores.detach().cpu().numpy() displacement = displacement.detach().cpu().numpy() displacement = displacement.transpose((1, 2, 0)) return ptss, scores, displacement def pred_lines(image, model, input_shape=[512, 512], score_thr=0.10, dist_thr=20.0, device='cuda'): h, w, _ = image.shape h_ratio, w_ratio = [h / input_shape[0], w / input_shape[1]] resized_image = np.concatenate([ cv2.resize(image, (input_shape[1], input_shape[0]), interpolation=cv2.INTER_AREA), np.ones([input_shape[0], input_shape[1], 1]) ], axis=-1) resized_image = resized_image.transpose((2, 0, 1)) batch_image = np.expand_dims(resized_image, axis=0).astype('float32') batch_image = (batch_image / 127.5) - 1.0 batch_image = torch.from_numpy(batch_image).float().to(device) outputs = model(batch_image) pts, pts_score, vmap = deccode_output_score_and_ptss(outputs, 200, 3) start = vmap[:, :, :2] end = vmap[:, :, 2:] dist_map = np.sqrt(np.sum((start - end)**2, axis=-1)) segments_list = [] for center, score in zip(pts, pts_score): y, x = center distance = dist_map[y, x] if score > score_thr and distance > dist_thr: disp_x_start, disp_y_start, disp_x_end, disp_y_end = vmap[y, x, :] x_start = x + disp_x_start y_start = y + disp_y_start x_end = x + disp_x_end y_end = y + disp_y_end segments_list.append([x_start, y_start, x_end, y_end]) lines = 2 * np.array(segments_list) # 256 > 512 lines[:, 0] = lines[:, 0] * w_ratio lines[:, 1] = lines[:, 1] * h_ratio lines[:, 2] = lines[:, 2] * w_ratio lines[:, 3] = lines[:, 3] * h_ratio return lines def pred_squares( image, model, input_shape=[512, 512], device='cuda', params={ 'score': 0.06, 'outside_ratio': 0.28, 'inside_ratio': 0.45, 'w_overlap': 0.0, 'w_degree': 1.95, 'w_length': 0.0, 'w_area': 1.86, 'w_center': 0.14 }): # noqa # shape = [height, width] h, w, _ = image.shape original_shape = [h, w] resized_image = np.concatenate([ cv2.resize(image, (input_shape[0], input_shape[1]), interpolation=cv2.INTER_AREA), np.ones([input_shape[0], input_shape[1], 1]) ], axis=-1) resized_image = resized_image.transpose((2, 0, 1)) batch_image = np.expand_dims(resized_image, axis=0).astype('float32') batch_image = (batch_image / 127.5) - 1.0 batch_image = torch.from_numpy(batch_image).float().to(device) outputs = model(batch_image) pts, pts_score, vmap = deccode_output_score_and_ptss(outputs, 200, 3) start = vmap[:, :, :2] # (x, y) end = vmap[:, :, 2:] # (x, y) dist_map = np.sqrt(np.sum((start - end)**2, axis=-1)) junc_list = [] segments_list = [] for junc, score in zip(pts, pts_score): y, x = junc distance = dist_map[y, x] if score > params['score'] and distance > 20.0: junc_list.append([x, y]) disp_x_start, disp_y_start, disp_x_end, disp_y_end = vmap[y, x, :] d_arrow = 1.0 x_start = x + d_arrow * disp_x_start y_start = y + d_arrow * disp_y_start x_end = x + d_arrow * disp_x_end y_end = y + d_arrow * disp_y_end segments_list.append([x_start, y_start, x_end, y_end]) segments = np.array(segments_list) # post processing for squares # 1. get unique lines point = np.array([[0, 0]]) point = point[0] start = segments[:, :2] end = segments[:, 2:] diff = start - end a = diff[:, 1] b = -diff[:, 0] c = a * start[:, 0] + b * start[:, 1] d = np.abs(a * point[0] + b * point[1] - c) / np.sqrt(a**2 + b**2 + 1e-10) theta = np.arctan2(diff[:, 0], diff[:, 1]) * 180 / np.pi theta[theta < 0.0] += 180 hough = np.concatenate([d[:, None], theta[:, None]], axis=-1) d_quant = 1 theta_quant = 2 hough[:, 0] //= d_quant hough[:, 1] //= theta_quant _, indices, counts = np.unique(hough, axis=0, return_index=True, return_counts=True) acc_map = np.zeros([512 // d_quant + 1, 360 // theta_quant + 1], dtype='float32') idx_map = np.zeros([512 // d_quant + 1, 360 // theta_quant + 1], dtype='int32') - 1 yx_indices = hough[indices, :].astype('int32') acc_map[yx_indices[:, 0], yx_indices[:, 1]] = counts idx_map[yx_indices[:, 0], yx_indices[:, 1]] = indices acc_map_np = acc_map # acc_map = acc_map[None, :, :, None] # # ### fast suppression using tensorflow op # acc_map = tf.constant(acc_map, dtype=tf.float32) # max_acc_map = tf.keras.layers.MaxPool2D(pool_size=(5, 5), strides=1, padding='same')(acc_map) # acc_map = acc_map * tf.cast(tf.math.equal(acc_map, max_acc_map), tf.float32) # flatten_acc_map = tf.reshape(acc_map, [1, -1]) # topk_values, topk_indices = tf.math.top_k(flatten_acc_map, k=len(pts)) # _, h, w, _ = acc_map.shape # y = tf.expand_dims(topk_indices // w, axis=-1) # x = tf.expand_dims(topk_indices % w, axis=-1) # yx = tf.concat([y, x], axis=-1) # fast suppression using pytorch op acc_map = torch.from_numpy(acc_map_np).unsqueeze(0).unsqueeze(0) _, _, h, w = acc_map.shape max_acc_map = F.max_pool2d(acc_map, kernel_size=5, stride=1, padding=2) acc_map = acc_map * ((acc_map == max_acc_map).float()) flatten_acc_map = acc_map.reshape([ -1, ]) scores, indices = torch.topk(flatten_acc_map, len(pts), dim=-1, largest=True) yy = torch.div(indices, w, rounding_mode='floor').unsqueeze(-1) xx = torch.fmod(indices, w).unsqueeze(-1) yx = torch.cat((yy, xx), dim=-1) yx = yx.detach().cpu().numpy() topk_values = scores.detach().cpu().numpy() indices = idx_map[yx[:, 0], yx[:, 1]] basis = 5 // 2 merged_segments = [] for yx_pt, max_indice, value in zip(yx, indices, topk_values): y, x = yx_pt if max_indice == -1 or value == 0: continue segment_list = [] for y_offset in range(-basis, basis + 1): for x_offset in range(-basis, basis + 1): indice = idx_map[y + y_offset, x + x_offset] cnt = int(acc_map_np[y + y_offset, x + x_offset]) if indice != -1: segment_list.append(segments[indice]) if cnt > 1: check_cnt = 1 current_hough = hough[indice] for new_indice, new_hough in enumerate(hough): if (current_hough == new_hough).all() and indice != new_indice: segment_list.append(segments[new_indice]) check_cnt += 1 if check_cnt == cnt: break group_segments = np.array(segment_list).reshape([-1, 2]) sorted_group_segments = np.sort(group_segments, axis=0) x_min, y_min = sorted_group_segments[0, :] x_max, y_max = sorted_group_segments[-1, :] deg = theta[max_indice] if deg >= 90: merged_segments.append([x_min, y_max, x_max, y_min]) else: merged_segments.append([x_min, y_min, x_max, y_max]) # 2. get intersections new_segments = np.array(merged_segments) # (x1, y1, x2, y2) start = new_segments[:, :2] # (x1, y1) end = new_segments[:, 2:] # (x2, y2) new_centers = (start + end) / 2.0 diff = start - end dist_segments = np.sqrt(np.sum(diff**2, axis=-1)) # ax + by = c a = diff[:, 1] b = -diff[:, 0] c = a * start[:, 0] + b * start[:, 1] pre_det = a[:, None] * b[None, :] det = pre_det - np.transpose(pre_det) pre_inter_y = a[:, None] * c[None, :] inter_y = (pre_inter_y - np.transpose(pre_inter_y)) / (det + 1e-10) pre_inter_x = c[:, None] * b[None, :] inter_x = (pre_inter_x - np.transpose(pre_inter_x)) / (det + 1e-10) inter_pts = np.concatenate([inter_x[:, :, None], inter_y[:, :, None]], axis=-1).astype('int32') # 3. get corner information # 3.1 get distance ''' dist_segments: | dist(0), dist(1), dist(2), ...| dist_inter_to_segment1: | dist(inter,0), dist(inter,0), dist(inter,0), ... | | dist(inter,1), dist(inter,1), dist(inter,1), ... | ... dist_inter_to_semgnet2: | dist(inter,0), dist(inter,1), dist(inter,2), ... | | dist(inter,0), dist(inter,1), dist(inter,2), ... | ... ''' dist_inter_to_segment1_start = np.sqrt( np.sum(((inter_pts - start[:, None, :])**2), axis=-1, keepdims=True)) # [n_batch, n_batch, 1] dist_inter_to_segment1_end = np.sqrt( np.sum(((inter_pts - end[:, None, :])**2), axis=-1, keepdims=True)) # [n_batch, n_batch, 1] dist_inter_to_segment2_start = np.sqrt( np.sum(((inter_pts - start[None, :, :])**2), axis=-1, keepdims=True)) # [n_batch, n_batch, 1] dist_inter_to_segment2_end = np.sqrt( np.sum(((inter_pts - end[None, :, :])**2), axis=-1, keepdims=True)) # [n_batch, n_batch, 1] # sort ascending dist_inter_to_segment1 = np.sort(np.concatenate( [dist_inter_to_segment1_start, dist_inter_to_segment1_end], axis=-1), axis=-1) # [n_batch, n_batch, 2] dist_inter_to_segment2 = np.sort(np.concatenate( [dist_inter_to_segment2_start, dist_inter_to_segment2_end], axis=-1), axis=-1) # [n_batch, n_batch, 2] # 3.2 get degree inter_to_start = new_centers[:, None, :] - inter_pts deg_inter_to_start = np.arctan2(inter_to_start[:, :, 1], inter_to_start[:, :, 0]) * 180 / np.pi deg_inter_to_start[deg_inter_to_start < 0.0] += 360 inter_to_end = new_centers[None, :, :] - inter_pts deg_inter_to_end = np.arctan2(inter_to_end[:, :, 1], inter_to_end[:, :, 0]) * 180 / np.pi deg_inter_to_end[deg_inter_to_end < 0.0] += 360 ''' B -- G | | C -- R B : blue / G: green / C: cyan / R: red 0 -- 1 | | 3 -- 2 ''' # rename variables deg1_map, deg2_map = deg_inter_to_start, deg_inter_to_end # sort deg ascending deg_sort = np.sort(np.concatenate( [deg1_map[:, :, None], deg2_map[:, :, None]], axis=-1), axis=-1) deg_diff_map = np.abs(deg1_map - deg2_map) # we only consider the smallest degree of intersect deg_diff_map[deg_diff_map > 180] = 360 - deg_diff_map[deg_diff_map > 180] # define available degree range deg_range = [60, 120] corner_dict = {corner_info: [] for corner_info in range(4)} inter_points = [] for i in range(inter_pts.shape[0]): for j in range(i + 1, inter_pts.shape[1]): # i, j > line index, always i < j x, y = inter_pts[i, j, :] deg1, deg2 = deg_sort[i, j, :] deg_diff = deg_diff_map[i, j] check_degree = deg_diff > deg_range[0] and deg_diff < deg_range[1] outside_ratio = params['outside_ratio'] # over ratio >>> drop it! inside_ratio = params['inside_ratio'] # over ratio >>> drop it! check_distance = ((dist_inter_to_segment1[i, j, 1] >= dist_segments[i] and dist_inter_to_segment1[i, j, 0] <= dist_segments[i] * outside_ratio) or (dist_inter_to_segment1[i, j, 1] <= dist_segments[i] and dist_inter_to_segment1[i, j, 0] <= dist_segments[i] * inside_ratio)) and \ ((dist_inter_to_segment2[i, j, 1] >= dist_segments[j] and dist_inter_to_segment2[i, j, 0] <= dist_segments[j] * outside_ratio) or (dist_inter_to_segment2[i, j, 1] <= dist_segments[j] and dist_inter_to_segment2[i, j, 0] <= dist_segments[j] * inside_ratio)) if check_degree and check_distance: corner_info = None # noqa if (deg1 >= 0 and deg1 <= 45 and deg2 >= 45 and deg2 <= 120) or \ (deg2 >= 315 and deg1 >= 45 and deg1 <= 120): corner_info, color_info = 0, 'blue' elif (deg1 >= 45 and deg1 <= 125 and deg2 >= 125 and deg2 <= 225): corner_info, color_info = 1, 'green' elif (deg1 >= 125 and deg1 <= 225 and deg2 >= 225 and deg2 <= 315): corner_info, color_info = 2, 'black' elif (deg1 >= 0 and deg1 <= 45 and deg2 >= 225 and deg2 <= 315) or \ (deg2 >= 315 and deg1 >= 225 and deg1 <= 315): corner_info, color_info = 3, 'cyan' else: corner_info, color_info = 4, 'red' # we don't use it # noqa continue corner_dict[corner_info].append([x, y, i, j]) inter_points.append([x, y]) square_list = [] connect_list = [] segments_list = [] for corner0 in corner_dict[0]: for corner1 in corner_dict[1]: connect01 = False for corner0_line in corner0[2:]: if corner0_line in corner1[2:]: connect01 = True break if connect01: for corner2 in corner_dict[2]: connect12 = False for corner1_line in corner1[2:]: if corner1_line in corner2[2:]: connect12 = True break if connect12: for corner3 in corner_dict[3]: connect23 = False for corner2_line in corner2[2:]: if corner2_line in corner3[2:]: connect23 = True break if connect23: for corner3_line in corner3[2:]: if corner3_line in corner0[2:]: # SQUARE!!! ''' 0 -- 1 | | 3 -- 2 square_list: order: 0 > 1 > 2 > 3 | x0, y0, x1, y1, x2, y2, x3, y3 | | x0, y0, x1, y1, x2, y2, x3, y3 | ... connect_list: order: 01 > 12 > 23 > 30 | line_idx01, line_idx12, line_idx23, line_idx30 | | line_idx01, line_idx12, line_idx23, line_idx30 | ... segments_list: order: 0 > 1 > 2 > 3 | line_idx0_i, line_idx0_j, line_idx1_i, line_idx1_j, line_idx2_i, line_idx2_j, line_idx3_i, line_idx3_j | | line_idx0_i, line_idx0_j, line_idx1_i, line_idx1_j, line_idx2_i, line_idx2_j, line_idx3_i, line_idx3_j | ... ''' square_list.append(corner0[:2] + corner1[:2] + corner2[:2] + corner3[:2]) connect_list.append([ corner0_line, corner1_line, corner2_line, corner3_line ]) segments_list.append(corner0[2:] + corner1[2:] + corner2[2:] + corner3[2:]) def check_outside_inside(segments_info, connect_idx): # return 'outside or inside', min distance, cover_param, peri_param if connect_idx == segments_info[0]: check_dist_mat = dist_inter_to_segment1 else: check_dist_mat = dist_inter_to_segment2 i, j = segments_info min_dist, max_dist = check_dist_mat[i, j, :] connect_dist = dist_segments[connect_idx] if max_dist > connect_dist: return 'outside', min_dist, 0, 1 else: return 'inside', min_dist, -1, -1 top_square = None # noqa try: map_size = input_shape[0] / 2 squares = np.array(square_list).reshape([-1, 4, 2]) score_array = [] connect_array = np.array(connect_list) segments_array = np.array(segments_list).reshape([-1, 4, 2]) # get degree of corners: squares_rollup = np.roll(squares, 1, axis=1) squares_rolldown = np.roll(squares, -1, axis=1) vec1 = squares_rollup - squares normalized_vec1 = vec1 / ( np.linalg.norm(vec1, axis=-1, keepdims=True) + 1e-10) vec2 = squares_rolldown - squares normalized_vec2 = vec2 / ( np.linalg.norm(vec2, axis=-1, keepdims=True) + 1e-10) inner_products = np.sum(normalized_vec1 * normalized_vec2, axis=-1) # [n_squares, 4] squares_degree = np.arccos( inner_products) * 180 / np.pi # [n_squares, 4] # get square score overlap_scores = [] degree_scores = [] length_scores = [] for connects, segments, square, degree in zip(connect_array, segments_array, squares, squares_degree): ''' 0 -- 1 | | 3 -- 2 # segments: [4, 2] # connects: [4] ''' # OVERLAP SCORES cover = 0 perimeter = 0 # check 0 > 1 > 2 > 3 square_length = [] for start_idx in range(4): end_idx = (start_idx + 1) % 4 connect_idx = connects[start_idx] # segment idx of segment01 start_segments = segments[start_idx] end_segments = segments[end_idx] start_point = square[start_idx] # noqa end_point = square[end_idx] # noqa # check whether outside or inside start_position, start_min, start_cover_param, start_peri_param = check_outside_inside( start_segments, connect_idx) end_position, end_min, end_cover_param, end_peri_param = check_outside_inside( end_segments, connect_idx) cover += dist_segments[ connect_idx] + start_cover_param * start_min + end_cover_param * end_min perimeter += dist_segments[ connect_idx] + start_peri_param * start_min + end_peri_param * end_min square_length.append(dist_segments[connect_idx] + start_peri_param * start_min + end_peri_param * end_min) overlap_scores.append(cover / perimeter) # DEGREE SCORES ''' deg0 vs deg2 deg1 vs deg3 ''' deg0, deg1, deg2, deg3 = degree deg_ratio1 = deg0 / deg2 if deg_ratio1 > 1.0: deg_ratio1 = 1 / deg_ratio1 deg_ratio2 = deg1 / deg3 if deg_ratio2 > 1.0: deg_ratio2 = 1 / deg_ratio2 degree_scores.append((deg_ratio1 + deg_ratio2) / 2) # LENGTH SCORES ''' len0 vs len2 len1 vs len3 ''' len0, len1, len2, len3 = square_length len_ratio1 = len0 / len2 if len2 > len0 else len2 / len0 len_ratio2 = len1 / len3 if len3 > len1 else len3 / len1 length_scores.append((len_ratio1 + len_ratio2) / 2) ###################################### overlap_scores = np.array(overlap_scores) overlap_scores /= np.max(overlap_scores) degree_scores = np.array(degree_scores) # degree_scores /= np.max(degree_scores) length_scores = np.array(length_scores) # AREA SCORES area_scores = np.reshape(squares, [-1, 4, 2]) area_x = area_scores[:, :, 0] area_y = area_scores[:, :, 1] correction = area_x[:, -1] * area_y[:, 0] - area_y[:, -1] * area_x[:, 0] area_scores = np.sum(area_x[:, :-1] * area_y[:, 1:], axis=-1) - np.sum( area_y[:, :-1] * area_x[:, 1:], axis=-1) area_scores = 0.5 * np.abs(area_scores + correction) area_scores /= (map_size * map_size) # np.max(area_scores) # CENTER SCORES centers = np.array([[256 // 2, 256 // 2]], dtype='float32') # [1, 2] # squares: [n, 4, 2] square_centers = np.mean(squares, axis=1) # [n, 2] center2center = np.sqrt(np.sum((centers - square_centers)**2)) center_scores = center2center / (map_size / np.sqrt(2.0)) ''' score_w = [overlap, degree, area, center, length] ''' score_w = [0.0, 1.0, 10.0, 0.5, 1.0] # noqa score_array = (params['w_overlap'] * overlap_scores + params['w_degree'] * degree_scores + params['w_area'] * area_scores - params['w_center'] * center_scores + params['w_length'] * length_scores) best_square = [] # noqa sorted_idx = np.argsort(score_array)[::-1] score_array = score_array[sorted_idx] squares = squares[sorted_idx] except Exception: pass '''return list merged_lines, squares, scores ''' try: new_segments[:, 0] = new_segments[:, 0] * 2 / input_shape[ 1] * original_shape[1] new_segments[:, 1] = new_segments[:, 1] * 2 / input_shape[ 0] * original_shape[0] new_segments[:, 2] = new_segments[:, 2] * 2 / input_shape[ 1] * original_shape[1] new_segments[:, 3] = new_segments[:, 3] * 2 / input_shape[ 0] * original_shape[0] except Exception: new_segments = [] try: squares[:, :, 0] = squares[:, :, 0] * 2 / input_shape[1] * original_shape[1] squares[:, :, 1] = squares[:, :, 1] * 2 / input_shape[0] * original_shape[0] except Exception: squares = [] score_array = [] try: inter_points = np.array(inter_points) inter_points[:, 0] = inter_points[:, 0] * 2 / input_shape[ 1] * original_shape[1] inter_points[:, 1] = inter_points[:, 1] * 2 / input_shape[ 0] * original_shape[0] except Exception: inter_points = [] return new_segments, squares, score_array, inter_points