Spaces:
Running
on
Zero
Running
on
Zero
# -*- coding: utf-8 -*- | |
# Copyright (c) Alibaba, Inc. and its affiliates. | |
# Midas Depth Estimation | |
# From https://github.com/isl-org/MiDaS | |
# MIT LICENSE | |
from abc import ABCMeta | |
import numpy as np | |
import torch | |
from einops import rearrange | |
from PIL import Image | |
from scepter.modules.annotator.base_annotator import BaseAnnotator | |
from scepter.modules.annotator.midas.api import MiDaSInference | |
from scepter.modules.annotator.registry import ANNOTATORS | |
from scepter.modules.annotator.utils import resize_image, resize_image_ori | |
from scepter.modules.utils.config import dict_to_yaml | |
from scepter.modules.utils.distribute import we | |
from scepter.modules.utils.file_system import FS | |
class MidasDetector(BaseAnnotator, metaclass=ABCMeta): | |
def __init__(self, cfg, logger=None): | |
super().__init__(cfg, logger=logger) | |
pretrained_model = cfg.get('PRETRAINED_MODEL', None) | |
if pretrained_model: | |
with FS.get_from(pretrained_model, wait_finish=True) as local_path: | |
self.model = MiDaSInference(model_type='dpt_hybrid', | |
model_path=local_path) | |
self.a = cfg.get('A', np.pi * 2.0) | |
self.bg_th = cfg.get('BG_TH', 0.1) | |
def forward(self, image): | |
if isinstance(image, Image.Image): | |
image = np.array(image) | |
elif isinstance(image, torch.Tensor): | |
image = image.detach().cpu().numpy() | |
elif isinstance(image, np.ndarray): | |
image = image.copy() | |
else: | |
raise f'Unsurpport datatype{type(image)}, only surpport np.ndarray, torch.Tensor, Pillow Image.' | |
image_depth = image | |
h, w, c = image.shape | |
image_depth, k = resize_image(image_depth, | |
1024 if min(h, w) > 1024 else min(h, w)) | |
image_depth = torch.from_numpy(image_depth).float().to(we.device_id) | |
image_depth = image_depth / 127.5 - 1.0 | |
image_depth = rearrange(image_depth, 'h w c -> 1 c h w') | |
depth = self.model(image_depth)[0] | |
depth_pt = depth.clone() | |
depth_pt -= torch.min(depth_pt) | |
depth_pt /= torch.max(depth_pt) | |
depth_pt = depth_pt.cpu().numpy() | |
depth_image = (depth_pt * 255.0).clip(0, 255).astype(np.uint8) | |
depth_image = depth_image[..., None].repeat(3, 2) | |
# depth_np = depth.cpu().numpy() # float16 error | |
# x = cv2.Sobel(depth_np, cv2.CV_32F, 1, 0, ksize=3) | |
# y = cv2.Sobel(depth_np, cv2.CV_32F, 0, 1, ksize=3) | |
# z = np.ones_like(x) * self.a | |
# x[depth_pt < self.bg_th] = 0 | |
# y[depth_pt < self.bg_th] = 0 | |
# normal = np.stack([x, y, z], axis=2) | |
# normal /= np.sum(normal**2.0, axis=2, keepdims=True)**0.5 | |
# normal_image = (normal * 127.5 + 127.5).clip(0, 255).astype(np.uint8) | |
depth_image = resize_image_ori(h, w, depth_image, k) | |
return depth_image | |
def get_config_template(): | |
return dict_to_yaml('ANNOTATORS', | |
__class__.__name__, | |
MidasDetector.para_dict, | |
set_name=True) | |