Spaces:
Running
on
Zero
Running
on
Zero
import logging | |
import math | |
import re | |
from abc import abstractmethod | |
from contextlib import contextmanager | |
from typing import Any, Dict, List, Optional, Tuple, Union | |
import pytorch_lightning as pl | |
import torch | |
import torch.nn as nn | |
from einops import rearrange | |
from packaging import version | |
from ..modules.autoencoding.regularizers import AbstractRegularizer | |
from ..modules.ema import LitEma | |
from ..util import (default, get_nested_attribute, get_obj_from_str, | |
instantiate_from_config) | |
logpy = logging.getLogger(__name__) | |
class AbstractAutoencoder(pl.LightningModule): | |
""" | |
This is the base class for all autoencoders, including image autoencoders, image autoencoders with discriminators, | |
unCLIP models, etc. Hence, it is fairly general, and specific features | |
(e.g. discriminator training, encoding, decoding) must be implemented in subclasses. | |
""" | |
def __init__( | |
self, | |
ema_decay: Union[None, float] = None, | |
monitor: Union[None, str] = None, | |
input_key: str = "jpg", | |
): | |
super().__init__() | |
self.input_key = input_key | |
self.use_ema = ema_decay is not None | |
if monitor is not None: | |
self.monitor = monitor | |
if self.use_ema: | |
self.model_ema = LitEma(self, decay=ema_decay) | |
logpy.info(f"Keeping EMAs of {len(list(self.model_ema.buffers()))}.") | |
if version.parse(torch.__version__) >= version.parse("2.0.0"): | |
self.automatic_optimization = False | |
def apply_ckpt(self, ckpt: Union[None, str, dict]): | |
if ckpt is None: | |
return | |
if isinstance(ckpt, str): | |
ckpt = { | |
"target": "sgm.modules.checkpoint.CheckpointEngine", | |
"params": {"ckpt_path": ckpt}, | |
} | |
engine = instantiate_from_config(ckpt) | |
engine(self) | |
def get_input(self, batch) -> Any: | |
raise NotImplementedError() | |
def on_train_batch_end(self, *args, **kwargs): | |
# for EMA computation | |
if self.use_ema: | |
self.model_ema(self) | |
def ema_scope(self, context=None): | |
if self.use_ema: | |
self.model_ema.store(self.parameters()) | |
self.model_ema.copy_to(self) | |
if context is not None: | |
logpy.info(f"{context}: Switched to EMA weights") | |
try: | |
yield None | |
finally: | |
if self.use_ema: | |
self.model_ema.restore(self.parameters()) | |
if context is not None: | |
logpy.info(f"{context}: Restored training weights") | |
def encode(self, *args, **kwargs) -> torch.Tensor: | |
raise NotImplementedError("encode()-method of abstract base class called") | |
def decode(self, *args, **kwargs) -> torch.Tensor: | |
raise NotImplementedError("decode()-method of abstract base class called") | |
def instantiate_optimizer_from_config(self, params, lr, cfg): | |
logpy.info(f"loading >>> {cfg['target']} <<< optimizer from config") | |
return get_obj_from_str(cfg["target"])( | |
params, lr=lr, **cfg.get("params", dict()) | |
) | |
def configure_optimizers(self) -> Any: | |
raise NotImplementedError() | |
class AutoencodingEngine(AbstractAutoencoder): | |
""" | |
Base class for all image autoencoders that we train, like VQGAN or AutoencoderKL | |
(we also restore them explicitly as special cases for legacy reasons). | |
Regularizations such as KL or VQ are moved to the regularizer class. | |
""" | |
def __init__( | |
self, | |
*args, | |
encoder_config: Dict, | |
decoder_config: Dict, | |
loss_config: Dict, | |
regularizer_config: Dict, | |
optimizer_config: Union[Dict, None] = None, | |
lr_g_factor: float = 1.0, | |
trainable_ae_params: Optional[List[List[str]]] = None, | |
ae_optimizer_args: Optional[List[dict]] = None, | |
trainable_disc_params: Optional[List[List[str]]] = None, | |
disc_optimizer_args: Optional[List[dict]] = None, | |
disc_start_iter: int = 0, | |
diff_boost_factor: float = 3.0, | |
ckpt_engine: Union[None, str, dict] = None, | |
ckpt_path: Optional[str] = None, | |
additional_decode_keys: Optional[List[str]] = None, | |
**kwargs, | |
): | |
super().__init__(*args, **kwargs) | |
self.automatic_optimization = False # pytorch lightning | |
self.encoder: torch.nn.Module = instantiate_from_config(encoder_config) | |
self.decoder: torch.nn.Module = instantiate_from_config(decoder_config) | |
self.loss: torch.nn.Module = instantiate_from_config(loss_config) | |
self.regularization: AbstractRegularizer = instantiate_from_config( | |
regularizer_config | |
) | |
self.optimizer_config = default( | |
optimizer_config, {"target": "torch.optim.Adam"} | |
) | |
self.diff_boost_factor = diff_boost_factor | |
self.disc_start_iter = disc_start_iter | |
self.lr_g_factor = lr_g_factor | |
self.trainable_ae_params = trainable_ae_params | |
if self.trainable_ae_params is not None: | |
self.ae_optimizer_args = default( | |
ae_optimizer_args, | |
[{} for _ in range(len(self.trainable_ae_params))], | |
) | |
assert len(self.ae_optimizer_args) == len(self.trainable_ae_params) | |
else: | |
self.ae_optimizer_args = [{}] # makes type consitent | |
self.trainable_disc_params = trainable_disc_params | |
if self.trainable_disc_params is not None: | |
self.disc_optimizer_args = default( | |
disc_optimizer_args, | |
[{} for _ in range(len(self.trainable_disc_params))], | |
) | |
assert len(self.disc_optimizer_args) == len(self.trainable_disc_params) | |
else: | |
self.disc_optimizer_args = [{}] # makes type consitent | |
if ckpt_path is not None: | |
assert ckpt_engine is None, "Can't set ckpt_engine and ckpt_path" | |
logpy.warn("Checkpoint path is deprecated, use `checkpoint_egnine` instead") | |
self.apply_ckpt(default(ckpt_path, ckpt_engine)) | |
self.additional_decode_keys = set(default(additional_decode_keys, [])) | |
def get_input(self, batch: Dict) -> torch.Tensor: | |
# assuming unified data format, dataloader returns a dict. | |
# image tensors should be scaled to -1 ... 1 and in channels-first | |
# format (e.g., bchw instead if bhwc) | |
return batch[self.input_key] | |
def get_autoencoder_params(self) -> list: | |
params = [] | |
if hasattr(self.loss, "get_trainable_autoencoder_parameters"): | |
params += list(self.loss.get_trainable_autoencoder_parameters()) | |
if hasattr(self.regularization, "get_trainable_parameters"): | |
params += list(self.regularization.get_trainable_parameters()) | |
params = params + list(self.encoder.parameters()) | |
params = params + list(self.decoder.parameters()) | |
return params | |
def get_discriminator_params(self) -> list: | |
if hasattr(self.loss, "get_trainable_parameters"): | |
params = list(self.loss.get_trainable_parameters()) # e.g., discriminator | |
else: | |
params = [] | |
return params | |
def get_last_layer(self): | |
return self.decoder.get_last_layer() | |
def encode( | |
self, | |
x: torch.Tensor, | |
return_reg_log: bool = False, | |
unregularized: bool = False, | |
) -> Union[torch.Tensor, Tuple[torch.Tensor, dict]]: | |
z = self.encoder(x) | |
if unregularized: | |
return z, dict() | |
z, reg_log = self.regularization(z) | |
if return_reg_log: | |
return z, reg_log | |
return z | |
def decode(self, z: torch.Tensor, **kwargs) -> torch.Tensor: | |
x = self.decoder(z, **kwargs) | |
return x | |
def forward( | |
self, x: torch.Tensor, **additional_decode_kwargs | |
) -> Tuple[torch.Tensor, torch.Tensor, dict]: | |
z, reg_log = self.encode(x, return_reg_log=True) | |
dec = self.decode(z, **additional_decode_kwargs) | |
return z, dec, reg_log | |
def inner_training_step( | |
self, batch: dict, batch_idx: int, optimizer_idx: int = 0 | |
) -> torch.Tensor: | |
x = self.get_input(batch) | |
additional_decode_kwargs = { | |
key: batch[key] for key in self.additional_decode_keys.intersection(batch) | |
} | |
z, xrec, regularization_log = self(x, **additional_decode_kwargs) | |
if hasattr(self.loss, "forward_keys"): | |
extra_info = { | |
"z": z, | |
"optimizer_idx": optimizer_idx, | |
"global_step": self.global_step, | |
"last_layer": self.get_last_layer(), | |
"split": "train", | |
"regularization_log": regularization_log, | |
"autoencoder": self, | |
} | |
extra_info = {k: extra_info[k] for k in self.loss.forward_keys} | |
else: | |
extra_info = dict() | |
if optimizer_idx == 0: | |
# autoencode | |
out_loss = self.loss(x, xrec, **extra_info) | |
if isinstance(out_loss, tuple): | |
aeloss, log_dict_ae = out_loss | |
else: | |
# simple loss function | |
aeloss = out_loss | |
log_dict_ae = {"train/loss/rec": aeloss.detach()} | |
self.log_dict( | |
log_dict_ae, | |
prog_bar=False, | |
logger=True, | |
on_step=True, | |
on_epoch=True, | |
sync_dist=False, | |
) | |
self.log( | |
"loss", | |
aeloss.mean().detach(), | |
prog_bar=True, | |
logger=False, | |
on_epoch=False, | |
on_step=True, | |
) | |
return aeloss | |
elif optimizer_idx == 1: | |
# discriminator | |
discloss, log_dict_disc = self.loss(x, xrec, **extra_info) | |
# -> discriminator always needs to return a tuple | |
self.log_dict( | |
log_dict_disc, prog_bar=False, logger=True, on_step=True, on_epoch=True | |
) | |
return discloss | |
else: | |
raise NotImplementedError(f"Unknown optimizer {optimizer_idx}") | |
def training_step(self, batch: dict, batch_idx: int): | |
opts = self.optimizers() | |
if not isinstance(opts, list): | |
# Non-adversarial case | |
opts = [opts] | |
optimizer_idx = batch_idx % len(opts) | |
if self.global_step < self.disc_start_iter: | |
optimizer_idx = 0 | |
opt = opts[optimizer_idx] | |
opt.zero_grad() | |
with opt.toggle_model(): | |
loss = self.inner_training_step( | |
batch, batch_idx, optimizer_idx=optimizer_idx | |
) | |
self.manual_backward(loss) | |
opt.step() | |
def validation_step(self, batch: dict, batch_idx: int) -> Dict: | |
log_dict = self._validation_step(batch, batch_idx) | |
with self.ema_scope(): | |
log_dict_ema = self._validation_step(batch, batch_idx, postfix="_ema") | |
log_dict.update(log_dict_ema) | |
return log_dict | |
def _validation_step(self, batch: dict, batch_idx: int, postfix: str = "") -> Dict: | |
x = self.get_input(batch) | |
z, xrec, regularization_log = self(x) | |
if hasattr(self.loss, "forward_keys"): | |
extra_info = { | |
"z": z, | |
"optimizer_idx": 0, | |
"global_step": self.global_step, | |
"last_layer": self.get_last_layer(), | |
"split": "val" + postfix, | |
"regularization_log": regularization_log, | |
"autoencoder": self, | |
} | |
extra_info = {k: extra_info[k] for k in self.loss.forward_keys} | |
else: | |
extra_info = dict() | |
out_loss = self.loss(x, xrec, **extra_info) | |
if isinstance(out_loss, tuple): | |
aeloss, log_dict_ae = out_loss | |
else: | |
# simple loss function | |
aeloss = out_loss | |
log_dict_ae = {f"val{postfix}/loss/rec": aeloss.detach()} | |
full_log_dict = log_dict_ae | |
if "optimizer_idx" in extra_info: | |
extra_info["optimizer_idx"] = 1 | |
discloss, log_dict_disc = self.loss(x, xrec, **extra_info) | |
full_log_dict.update(log_dict_disc) | |
self.log( | |
f"val{postfix}/loss/rec", | |
log_dict_ae[f"val{postfix}/loss/rec"], | |
sync_dist=True, | |
) | |
self.log_dict(full_log_dict, sync_dist=True) | |
return full_log_dict | |
def get_param_groups( | |
self, parameter_names: List[List[str]], optimizer_args: List[dict] | |
) -> Tuple[List[Dict[str, Any]], int]: | |
groups = [] | |
num_params = 0 | |
for names, args in zip(parameter_names, optimizer_args): | |
params = [] | |
for pattern_ in names: | |
pattern_params = [] | |
pattern = re.compile(pattern_) | |
for p_name, param in self.named_parameters(): | |
if re.match(pattern, p_name): | |
pattern_params.append(param) | |
num_params += param.numel() | |
if len(pattern_params) == 0: | |
logpy.warn(f"Did not find parameters for pattern {pattern_}") | |
params.extend(pattern_params) | |
groups.append({"params": params, **args}) | |
return groups, num_params | |
def configure_optimizers(self) -> List[torch.optim.Optimizer]: | |
if self.trainable_ae_params is None: | |
ae_params = self.get_autoencoder_params() | |
else: | |
ae_params, num_ae_params = self.get_param_groups( | |
self.trainable_ae_params, self.ae_optimizer_args | |
) | |
logpy.info(f"Number of trainable autoencoder parameters: {num_ae_params:,}") | |
if self.trainable_disc_params is None: | |
disc_params = self.get_discriminator_params() | |
else: | |
disc_params, num_disc_params = self.get_param_groups( | |
self.trainable_disc_params, self.disc_optimizer_args | |
) | |
logpy.info( | |
f"Number of trainable discriminator parameters: {num_disc_params:,}" | |
) | |
opt_ae = self.instantiate_optimizer_from_config( | |
ae_params, | |
default(self.lr_g_factor, 1.0) * self.learning_rate, | |
self.optimizer_config, | |
) | |
opts = [opt_ae] | |
if len(disc_params) > 0: | |
opt_disc = self.instantiate_optimizer_from_config( | |
disc_params, self.learning_rate, self.optimizer_config | |
) | |
opts.append(opt_disc) | |
return opts | |
def log_images( | |
self, batch: dict, additional_log_kwargs: Optional[Dict] = None, **kwargs | |
) -> dict: | |
log = dict() | |
additional_decode_kwargs = {} | |
x = self.get_input(batch) | |
additional_decode_kwargs.update( | |
{key: batch[key] for key in self.additional_decode_keys.intersection(batch)} | |
) | |
_, xrec, _ = self(x, **additional_decode_kwargs) | |
log["inputs"] = x | |
log["reconstructions"] = xrec | |
diff = 0.5 * torch.abs(torch.clamp(xrec, -1.0, 1.0) - x) | |
diff.clamp_(0, 1.0) | |
log["diff"] = 2.0 * diff - 1.0 | |
# diff_boost shows location of small errors, by boosting their | |
# brightness. | |
log["diff_boost"] = ( | |
2.0 * torch.clamp(self.diff_boost_factor * diff, 0.0, 1.0) - 1 | |
) | |
if hasattr(self.loss, "log_images"): | |
log.update(self.loss.log_images(x, xrec)) | |
with self.ema_scope(): | |
_, xrec_ema, _ = self(x, **additional_decode_kwargs) | |
log["reconstructions_ema"] = xrec_ema | |
diff_ema = 0.5 * torch.abs(torch.clamp(xrec_ema, -1.0, 1.0) - x) | |
diff_ema.clamp_(0, 1.0) | |
log["diff_ema"] = 2.0 * diff_ema - 1.0 | |
log["diff_boost_ema"] = ( | |
2.0 * torch.clamp(self.diff_boost_factor * diff_ema, 0.0, 1.0) - 1 | |
) | |
if additional_log_kwargs: | |
additional_decode_kwargs.update(additional_log_kwargs) | |
_, xrec_add, _ = self(x, **additional_decode_kwargs) | |
log_str = "reconstructions-" + "-".join( | |
[f"{key}={additional_log_kwargs[key]}" for key in additional_log_kwargs] | |
) | |
log[log_str] = xrec_add | |
return log | |
class AutoencodingEngineLegacy(AutoencodingEngine): | |
def __init__(self, embed_dim: int, **kwargs): | |
self.max_batch_size = kwargs.pop("max_batch_size", None) | |
ddconfig = kwargs.pop("ddconfig") | |
ckpt_path = kwargs.pop("ckpt_path", None) | |
ckpt_engine = kwargs.pop("ckpt_engine", None) | |
super().__init__( | |
encoder_config={ | |
"target": "sgm.modules.diffusionmodules.model.Encoder", | |
"params": ddconfig, | |
}, | |
decoder_config={ | |
"target": "sgm.modules.diffusionmodules.model.Decoder", | |
"params": ddconfig, | |
}, | |
**kwargs, | |
) | |
self.quant_conv = torch.nn.Conv2d( | |
(1 + ddconfig["double_z"]) * ddconfig["z_channels"], | |
(1 + ddconfig["double_z"]) * embed_dim, | |
1, | |
) | |
self.post_quant_conv = torch.nn.Conv2d(embed_dim, ddconfig["z_channels"], 1) | |
self.embed_dim = embed_dim | |
self.apply_ckpt(default(ckpt_path, ckpt_engine)) | |
def get_autoencoder_params(self) -> list: | |
params = super().get_autoencoder_params() | |
return params | |
def encode( | |
self, x: torch.Tensor, return_reg_log: bool = False | |
) -> Union[torch.Tensor, Tuple[torch.Tensor, dict]]: | |
if self.max_batch_size is None: | |
z = self.encoder(x) | |
z = self.quant_conv(z) | |
else: | |
N = x.shape[0] | |
bs = self.max_batch_size | |
n_batches = int(math.ceil(N / bs)) | |
z = list() | |
for i_batch in range(n_batches): | |
z_batch = self.encoder(x[i_batch * bs : (i_batch + 1) * bs]) | |
z_batch = self.quant_conv(z_batch) | |
z.append(z_batch) | |
z = torch.cat(z, 0) | |
z, reg_log = self.regularization(z) | |
if return_reg_log: | |
return z, reg_log | |
return z | |
def decode(self, z: torch.Tensor, **decoder_kwargs) -> torch.Tensor: | |
if self.max_batch_size is None: | |
dec = self.post_quant_conv(z) | |
dec = self.decoder(dec, **decoder_kwargs) | |
else: | |
N = z.shape[0] | |
bs = self.max_batch_size | |
n_batches = int(math.ceil(N / bs)) | |
dec = list() | |
for i_batch in range(n_batches): | |
dec_batch = self.post_quant_conv(z[i_batch * bs : (i_batch + 1) * bs]) | |
dec_batch = self.decoder(dec_batch, **decoder_kwargs) | |
dec.append(dec_batch) | |
dec = torch.cat(dec, 0) | |
return dec | |
class AutoencoderKL(AutoencodingEngineLegacy): | |
def __init__(self, **kwargs): | |
if "lossconfig" in kwargs: | |
kwargs["loss_config"] = kwargs.pop("lossconfig") | |
super().__init__( | |
regularizer_config={ | |
"target": ( | |
"sgm.modules.autoencoding.regularizers" | |
".DiagonalGaussianRegularizer" | |
) | |
}, | |
**kwargs, | |
) | |
class AutoencoderLegacyVQ(AutoencodingEngineLegacy): | |
def __init__( | |
self, | |
embed_dim: int, | |
n_embed: int, | |
sane_index_shape: bool = False, | |
**kwargs, | |
): | |
if "lossconfig" in kwargs: | |
logpy.warn(f"Parameter `lossconfig` is deprecated, use `loss_config`.") | |
kwargs["loss_config"] = kwargs.pop("lossconfig") | |
super().__init__( | |
regularizer_config={ | |
"target": ( | |
"sgm.modules.autoencoding.regularizers.quantize" ".VectorQuantizer" | |
), | |
"params": { | |
"n_e": n_embed, | |
"e_dim": embed_dim, | |
"sane_index_shape": sane_index_shape, | |
}, | |
}, | |
**kwargs, | |
) | |
class IdentityFirstStage(AbstractAutoencoder): | |
def __init__(self, *args, **kwargs): | |
super().__init__(*args, **kwargs) | |
self.encoder = lambda x: x | |
self.decoder = lambda x: x | |
def get_input(self, x: Any) -> Any: | |
return x | |
def encode(self, x: Any, *args, **kwargs) -> Any: | |
# return x | |
return self.encoder(x) | |
def decode(self, x: Any, *args, **kwargs) -> Any: | |
# return x | |
return self.decoder(x) | |
class AEIntegerWrapper(nn.Module): | |
def __init__( | |
self, | |
model: nn.Module, | |
shape: Union[None, Tuple[int, int], List[int]] = (16, 16), | |
regularization_key: str = "regularization", | |
encoder_kwargs: Optional[Dict[str, Any]] = None, | |
): | |
super().__init__() | |
self.model = model | |
assert hasattr(model, "encode") and hasattr( | |
model, "decode" | |
), "Need AE interface" | |
self.regularization = get_nested_attribute(model, regularization_key) | |
self.shape = shape | |
self.encoder_kwargs = default(encoder_kwargs, {"return_reg_log": True}) | |
def encode(self, x) -> torch.Tensor: | |
assert ( | |
not self.training | |
), f"{self.__class__.__name__} only supports inference currently" | |
_, log = self.model.encode(x, **self.encoder_kwargs) | |
assert isinstance(log, dict) | |
inds = log["min_encoding_indices"] | |
return rearrange(inds, "b ... -> b (...)") | |
def decode( | |
self, inds: torch.Tensor, shape: Union[None, tuple, list] = None | |
) -> torch.Tensor: | |
# expect inds shape (b, s) with s = h*w | |
shape = default(shape, self.shape) # Optional[(h, w)] | |
if shape is not None: | |
assert len(shape) == 2, f"Unhandeled shape {shape}" | |
inds = rearrange(inds, "b (h w) -> b h w", h=shape[0], w=shape[1]) | |
h = self.regularization.get_codebook_entry(inds) # (b, h, w, c) | |
h = rearrange(h, "b h w c -> b c h w") | |
return self.model.decode(h) | |
class AutoencoderKLModeOnly(AutoencodingEngineLegacy): | |
def __init__(self, **kwargs): | |
if "lossconfig" in kwargs: | |
kwargs["loss_config"] = kwargs.pop("lossconfig") | |
super().__init__( | |
regularizer_config={ | |
"target": ( | |
"sgm.modules.autoencoding.regularizers" | |
".DiagonalGaussianRegularizer" | |
), | |
"params": {"sample": False}, | |
}, | |
**kwargs, | |
) | |