Spaces:
Running
on
Zero
Running
on
Zero
File size: 12,072 Bytes
a3a3ae4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 |
import argparse, os, sys, datetime, glob, importlib, csv
import numpy as np
import time
import torch
import torchvision
import pytorch_lightning as pl
from omegaconf import OmegaConf
from PIL import Image
from torchvision.utils import make_grid
from einops import rearrange
from logging import Logger
from typing import Callable, Optional
from pytorch_lightning.callbacks import Callback
from pytorch_lightning.utilities import rank_zero_only
from pytorch_lightning.utilities import rank_zero_info
from vtdm.util import tensor2vid, export_to_video
class SetupCallback(Callback):
def __init__(self, resume, now, logdir, ckptdir, cfgdir, config, lightning_config):
super().__init__()
self.resume = resume
self.now = now
self.logdir = logdir
self.ckptdir = ckptdir
self.cfgdir = cfgdir
self.config = config
self.lightning_config = lightning_config
def on_keyboard_interrupt(self, trainer, pl_module):
if trainer.global_rank == 0:
print("Summoning checkpoint.")
ckpt_path = os.path.join(self.ckptdir, "last.ckpt")
trainer.save_checkpoint(ckpt_path)
def on_pretrain_routine_start(self, trainer, pl_module):
#def on_fit_start(self, trainer, pl_module):
if trainer.global_rank == 0:
# Create logdirs and save configs
os.makedirs(self.logdir, exist_ok=True)
os.makedirs(self.ckptdir, exist_ok=True)
os.makedirs(self.cfgdir, exist_ok=True)
if "callbacks" in self.lightning_config:
if 'metrics_over_trainsteps_checkpoint' in self.lightning_config['callbacks']:
os.makedirs(os.path.join(self.ckptdir, 'trainstep_checkpoints'), exist_ok=True)
print("Project config")
print(OmegaConf.to_yaml(self.config))
OmegaConf.save(self.config, os.path.join(self.cfgdir, "{}-project.yaml".format(self.now)))
print("Lightning config")
print(OmegaConf.to_yaml(self.lightning_config))
OmegaConf.save(OmegaConf.create({"lightning": self.lightning_config}), os.path.join(self.cfgdir, "{}-lightning.yaml".format(self.now)))
else:
# ModelCheckpoint callback created log directory --- remove it
if not self.resume and os.path.exists(self.logdir):
dst, name = os.path.split(self.logdir)
dst = os.path.join(dst, "child_runs", name)
os.makedirs(os.path.split(dst)[0], exist_ok=True)
# try:
# os.rename(self.logdir, dst)
# except FileNotFoundError:
# pass
class ImageLogger(Callback):
def __init__(self, batch_frequency=2000, max_images=4, clamp=True, increase_log_steps=True,
rescale=True, disabled=False, log_on_batch_idx=False, log_first_step=False,
log_images_kwargs=None):
super().__init__()
self.rescale = rescale
self.batch_freq = batch_frequency
self.max_images = max_images
if not increase_log_steps:
self.log_steps = [self.batch_freq]
self.clamp = clamp
self.disabled = disabled
self.log_on_batch_idx = log_on_batch_idx
self.log_images_kwargs = log_images_kwargs if log_images_kwargs else {}
self.log_first_step = log_first_step
@rank_zero_only
def log_local(self, save_dir, split, images, global_step, current_epoch, batch_idx):
root = os.path.join(save_dir, "image_log", split)
for k in images:
filename = "{}_gs-{:06}_e-{:06}_b-{:06}".format(k, global_step, current_epoch, batch_idx)
path = os.path.join(root, filename)
os.makedirs(os.path.split(path)[0], exist_ok=True)
if 'video' in k: # log to video
export_to_video(images[k], path + '.mp4', save_to_gif=False, use_cv2=False, fps=6)
else:
grid = torchvision.utils.make_grid(images[k], nrow=4)
if self.rescale:
grid = (grid + 1.0) / 2.0 # -1,1 -> 0,1; c,h,w
grid = grid.transpose(0, 1).transpose(1, 2).squeeze(-1)
grid = grid.numpy()
grid = (grid * 255).astype(np.uint8)
Image.fromarray(grid).save(path + '.png')
def log_img(self, pl_module, batch, batch_idx, split="train"):
check_idx = batch_idx # if self.log_on_batch_idx else pl_module.global_step
if (self.check_frequency(check_idx) and # batch_idx % self.batch_freq == 0
hasattr(pl_module, "log_images") and
callable(pl_module.log_images) and
self.max_images > 0):
logger = type(pl_module.logger)
is_train = pl_module.training
if is_train:
pl_module.eval()
with torch.no_grad():
images = pl_module.log_images(batch, split=split, **self.log_images_kwargs)
for k in images:
if 'video' in k: # log to video
images[k] = tensor2vid(images[k])
else:
images[k] = images[k].to(dtype=torch.float32)
N = min(images[k].shape[0], self.max_images)
images[k] = images[k][:N]
if isinstance(images[k], torch.Tensor):
images[k] = images[k].detach().cpu()
if self.clamp:
images[k] = torch.clamp(images[k], -1., 1.)
self.log_local(pl_module.logger.save_dir, split, images,
pl_module.global_step, pl_module.current_epoch, batch_idx)
if is_train:
pl_module.train()
def check_frequency(self, check_idx):
return check_idx % self.batch_freq == 0
def on_train_batch_end(self, trainer, pl_module, outputs, batch, batch_idx, dataloader_idx):
if not self.disabled:
self.log_img(pl_module, batch, batch_idx, split="train")
class CUDACallback(Callback):
# see https://github.com/SeanNaren/minGPT/blob/master/mingpt/callback.py
def on_train_epoch_start(self, trainer, pl_module):
# Reset the memory use counter
torch.cuda.reset_peak_memory_stats(trainer.root_gpu)
torch.cuda.synchronize(trainer.root_gpu)
self.start_time = time.time()
def on_train_epoch_end(self, trainer, pl_module):
torch.cuda.synchronize(trainer.root_gpu)
max_memory = torch.cuda.max_memory_allocated(trainer.root_gpu) / 2 ** 20
epoch_time = time.time() - self.start_time
try:
max_memory = trainer.training_type_plugin.reduce(max_memory)
epoch_time = trainer.training_type_plugin.reduce(epoch_time)
rank_zero_info(f"Average Epoch time: {epoch_time:.2f} seconds")
rank_zero_info(f"Average Peak memory {max_memory:.2f} MiB")
except AttributeError:
pass
class TextProgressBar(pl.callbacks.ProgressBarBase):
"""A custom ProgressBar to log the training progress."""
def __init__(self, logger: Logger, refresh_rate: int = 50) -> None:
super().__init__()
self._logger = logger
self._refresh_rate = refresh_rate
self._enabled = True
# a time flag to indicate the beginning of an epoch
self._time = 0
@property
def refresh_rate(self) -> int:
return self._refresh_rate
@property
def is_enabled(self) -> bool:
return self._enabled
@property
def is_disabled(self) -> bool:
return not self.is_enabled
def disable(self) -> None:
# No need to disable the ProgressBar on processes with LOCAL_RANK != 1, because the
# StreamHandler of logging is disabled on these processes.
self._enabled = True
def enable(self) -> None:
self._enabled = True
@staticmethod
def _serialize_metrics(progressbar_log_dict: dict, filter_fn: Optional[Callable[[str], bool]] = None) -> str:
if filter_fn:
progressbar_log_dict = {k: v for k, v in progressbar_log_dict.items() if filter_fn(k)}
msg = ''
for metric, value in progressbar_log_dict.items():
if type(value) is str:
msg += f'{metric}: {value:.5f} '
elif 'acc' in metric:
msg += f'{metric}: {value:.3%} '
else:
msg += f'{metric}: {value:f} '
return msg
def on_train_start(self, trainer, pl_module):
super().on_train_start(trainer, pl_module)
def on_train_epoch_start(self, trainer, pl_module):
super().on_train_epoch_start(trainer, pl_module)
self._logger.info(f'Epoch: {trainer.current_epoch}, batch_num: {self.total_train_batches}')
self._time = time.time()
def on_train_batch_end(self, trainer, pl_module, outputs, batch, batch_idx, dataloader_idx):
# super().on_train_batch_end(trainer, pl_module, outputs, batch, batch_idx, dataloader_idx)
super().on_train_batch_end(trainer, pl_module, outputs, batch, batch_idx)
current = self.train_batch_idx
if self._should_update(current, self.total_train_batches):
batch_time = (time.time() - self._time) / self.train_batch_idx
msg = f'[Epoch {trainer.current_epoch}] [Batch {self.train_batch_idx}/{self.total_train_batches} {batch_time:.2f} s/batch] => '
if current != self.total_train_batches:
filter_fn = lambda x: not x.startswith('val') and not x.startswith('test') and not x.startswith('global') and not x.endswith('_epoch')
else:
filter_fn = lambda x: not x.startswith('val') and not x.startswith('test') and not x.startswith('global')
msg += self._serialize_metrics(trainer.progress_bar_metrics, filter_fn=filter_fn)
self._logger.info(msg)
def on_train_end(self, trainer, pl_module):
super().on_train_end(trainer, pl_module)
self._logger.info(f'Training finished.')
def on_validation_start(self, trainer, pl_module):
super().on_validation_start(trainer, pl_module)
self._logger.info('Validation Begins. Epoch: {}, val batch num: {}'.format(trainer.current_epoch, self.total_val_batches))
def on_validation_batch_end(self, trainer, pl_module, outputs, batch, batch_idx, dataloader_idx):
super().on_validation_batch_end(trainer, pl_module, outputs, batch, batch_idx, dataloader_idx)
current = self.val_batch_idx
if self._should_update(current, self.total_val_batches):
batch_time = (time.time() - self._time) / self.val_batch_idx
msg = f'[Epoch {trainer.current_epoch}] [Val Batch {self.val_batch_idx}/{self.total_val_batches} {batch_time:.2f} s/batch] => '
if current != self.total_val_batches:
filter_fn = lambda x: x.startswith('val') and not x.endswith('_epoch')
else:
filter_fn = lambda x: x.startswith('val')
msg += self._serialize_metrics(trainer.progress_bar_metrics, filter_fn=filter_fn)
self._logger.info(msg)
def on_validation_end(self, trainer, pl_module):
super().on_validation_end(trainer, pl_module)
msg = f'[Epoch {trainer.current_epoch}] [Validation finished] => '
msg += self._serialize_metrics(trainer.progress_bar_metrics, filter_fn=lambda x: x.startswith('val') and x.endswith('_epoch'))
self._logger.info(msg)
def get_metrics(self, trainer, pl_module):
items = super().get_metrics(trainer, pl_module)
# don't show the version number
items.pop("v_num", None)
return items
def _should_update(self, current: int, total: int) -> bool:
return self.is_enabled and (current % self.refresh_rate == 0 or current == total)
def print(self, *args, sep: str = " ", **kwargs):
s = sep.join(map(str, args))
self._logger.info(f"[Progress Print] {s}")
|