Spaces:
Running
on
Zero
Running
on
Zero
File size: 24,911 Bytes
a3a3ae4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 |
import math
import random
import torch
from PIL import Image, ImageEnhance, ImageOps
try:
import accimage
except ImportError:
accimage = None
import collections
import numbers
import types
import warnings
import cv2
import numpy as np
from PIL import Image
_cv2_pad_to_str = {
'constant': cv2.BORDER_CONSTANT,
'edge': cv2.BORDER_REPLICATE,
'reflect': cv2.BORDER_REFLECT_101,
'symmetric': cv2.BORDER_REFLECT
}
_cv2_interpolation_to_str = {
'nearest': cv2.INTER_NEAREST,
'bilinear': cv2.INTER_LINEAR,
'area': cv2.INTER_AREA,
'bicubic': cv2.INTER_CUBIC,
'lanczos': cv2.INTER_LANCZOS4
}
_cv2_interpolation_from_str = {v: k for k, v in _cv2_interpolation_to_str.items()}
def _is_pil_image(img):
if accimage is not None:
return isinstance(img, (Image.Image, accimage.Image))
else:
return isinstance(img, Image.Image)
def _is_tensor_image(img):
return torch.is_tensor(img) and img.ndimension() == 3
def _is_numpy_image(img):
return isinstance(img, np.ndarray) and (img.ndim in {2, 3})
def to_tensor(pic):
"""Convert a ``PIL Image`` or ``numpy.ndarray`` to tensor.
See ``ToTensor`` for more details.
Args:
pic (PIL Image or numpy.ndarray): Image to be converted to tensor.
Returns:
Tensor: Converted image.
"""
if not (_is_numpy_image(pic)):
raise TypeError('pic should be ndarray. Got {}'.format(type(pic)))
# handle numpy array
img = torch.from_numpy(pic.transpose((2, 0, 1)))
# backward compatibility
if isinstance(img, torch.ByteTensor) or img.dtype == torch.uint8:
return img.float().div(255)
else:
return img
def normalize(tensor, mean, std):
"""Normalize a tensor image with mean and standard deviation.
.. note::
This transform acts in-place, i.e., it mutates the input tensor.
See :class:`~torchvision.transforms.Normalize` for more details.
Args:
tensor (Tensor): Tensor image of size (C, H, W) to be normalized.
mean (sequence): Sequence of means for each channel.
std (sequence): Sequence of standard deviations for each channely.
Returns:
Tensor: Normalized Tensor image.
"""
if not _is_tensor_image(tensor):
raise TypeError('tensor is not a torch image.')
# This is faster than using broadcasting, don't change without benchmarking
for t, m, s in zip(tensor, mean, std):
t.sub_(m).div_(s)
return tensor
def resize(img, size, interpolation=cv2.INTER_LINEAR):
r"""Resize the input numpy ndarray to the given size.
Args:
img (numpy ndarray): Image to be resized.
size (sequence or int): Desired output size. If size is a sequence like
(h, w), the output size will be matched to this. If size is an int,
the smaller edge of the image will be matched to this number maintaing
the aspect ratio. i.e, if height > width, then image will be rescaled to
:math:`\left(\text{size} \times \frac{\text{height}}{\text{width}}, \text{size}\right)`
interpolation (int, optional): Desired interpolation. Default is
``cv2.INTER_LINEAR``
Returns:
PIL Image: Resized image.
"""
if not _is_numpy_image(img):
raise TypeError('img should be numpy image. Got {}'.format(type(img)))
if not (isinstance(size, int) or (isinstance(size, collections.abc.Iterable) and len(size) == 2)):
raise TypeError('Got inappropriate size arg: {}'.format(size))
h, w = img.shape[0], img.shape[1]
if isinstance(size, int):
if (w <= h and w == size) or (h <= w and h == size):
return img
if w < h:
ow = size
oh = int(size * h / w)
else:
oh = size
ow = int(size * w / h)
else:
ow, oh = size[1], size[0]
output = cv2.resize(img, dsize=(ow, oh), interpolation=interpolation)
if img.shape[2] == 1:
return output[:, :, np.newaxis]
else:
return output
def scale(*args, **kwargs):
warnings.warn("The use of the transforms.Scale transform is deprecated, " + "please use transforms.Resize instead.")
return resize(*args, **kwargs)
def pad(img, padding, fill=0, padding_mode='constant'):
r"""Pad the given numpy ndarray on all sides with specified padding mode and fill value.
Args:
img (numpy ndarray): image to be padded.
padding (int or tuple): Padding on each border. If a single int is provided this
is used to pad all borders. If tuple of length 2 is provided this is the padding
on left/right and top/bottom respectively. If a tuple of length 4 is provided
this is the padding for the left, top, right and bottom borders
respectively.
fill: Pixel fill value for constant fill. Default is 0. If a tuple of
length 3, it is used to fill R, G, B channels respectively.
This value is only used when the padding_mode is constant
padding_mode: Type of padding. Should be: constant, edge, reflect or symmetric. Default is constant.
- constant: pads with a constant value, this value is specified with fill
- edge: pads with the last value on the edge of the image
- reflect: pads with reflection of image (without repeating the last value on the edge)
padding [1, 2, 3, 4] with 2 elements on both sides in reflect mode
will result in [3, 2, 1, 2, 3, 4, 3, 2]
- symmetric: pads with reflection of image (repeating the last value on the edge)
padding [1, 2, 3, 4] with 2 elements on both sides in symmetric mode
will result in [2, 1, 1, 2, 3, 4, 4, 3]
Returns:
Numpy image: padded image.
"""
if not _is_numpy_image(img):
raise TypeError('img should be numpy ndarray. Got {}'.format(type(img)))
if not isinstance(padding, (numbers.Number, tuple, list)):
raise TypeError('Got inappropriate padding arg')
if not isinstance(fill, (numbers.Number, str, tuple)):
raise TypeError('Got inappropriate fill arg')
if not isinstance(padding_mode, str):
raise TypeError('Got inappropriate padding_mode arg')
if isinstance(padding, collections.Sequence) and len(padding) not in [2, 4]:
raise ValueError("Padding must be an int or a 2, or 4 element tuple, not a " +
"{} element tuple".format(len(padding)))
assert padding_mode in ['constant', 'edge', 'reflect', 'symmetric'], \
'Padding mode should be either constant, edge, reflect or symmetric'
if isinstance(padding, int):
pad_left = pad_right = pad_top = pad_bottom = padding
if isinstance(padding, collections.Sequence) and len(padding) == 2:
pad_left = pad_right = padding[0]
pad_top = pad_bottom = padding[1]
if isinstance(padding, collections.Sequence) and len(padding) == 4:
pad_left = padding[0]
pad_top = padding[1]
pad_right = padding[2]
pad_bottom = padding[3]
if img.shape[2] == 1:
return cv2.copyMakeBorder(img,
top=pad_top,
bottom=pad_bottom,
left=pad_left,
right=pad_right,
borderType=_cv2_pad_to_str[padding_mode],
value=fill)[:, :, np.newaxis]
else:
return cv2.copyMakeBorder(img,
top=pad_top,
bottom=pad_bottom,
left=pad_left,
right=pad_right,
borderType=_cv2_pad_to_str[padding_mode],
value=fill)
def crop(img, i, j, h, w):
"""Crop the given PIL Image.
Args:
img (numpy ndarray): Image to be cropped.
i: Upper pixel coordinate.
j: Left pixel coordinate.
h: Height of the cropped image.
w: Width of the cropped image.
Returns:
numpy ndarray: Cropped image.
"""
if not _is_numpy_image(img):
raise TypeError('img should be numpy image. Got {}'.format(type(img)))
return img[i:i + h, j:j + w, :]
def center_crop(img, output_size):
if isinstance(output_size, numbers.Number):
output_size = (int(output_size), int(output_size))
h, w = img.shape[0:2]
th, tw = output_size
i = int(round((h - th) / 2.))
j = int(round((w - tw) / 2.))
return crop(img, i, j, th, tw)
def resized_crop(img, i, j, h, w, size, interpolation=cv2.INTER_LINEAR):
"""Crop the given numpy ndarray and resize it to desired size.
Notably used in :class:`~torchvision.transforms.RandomResizedCrop`.
Args:
img (numpy ndarray): Image to be cropped.
i: Upper pixel coordinate.
j: Left pixel coordinate.
h: Height of the cropped image.
w: Width of the cropped image.
size (sequence or int): Desired output size. Same semantics as ``scale``.
interpolation (int, optional): Desired interpolation. Default is
``cv2.INTER_CUBIC``.
Returns:
PIL Image: Cropped image.
"""
assert _is_numpy_image(img), 'img should be numpy image'
img = crop(img, i, j, h, w)
img = resize(img, size, interpolation=interpolation)
return img
def hflip(img):
"""Horizontally flip the given numpy ndarray.
Args:
img (numpy ndarray): image to be flipped.
Returns:
numpy ndarray: Horizontally flipped image.
"""
if not _is_numpy_image(img):
raise TypeError('img should be numpy image. Got {}'.format(type(img)))
# img[:,::-1] is much faster, but doesn't work with torch.from_numpy()!
if img.shape[2] == 1:
return cv2.flip(img, 1)[:, :, np.newaxis]
else:
return cv2.flip(img, 1)
def vflip(img):
"""Vertically flip the given numpy ndarray.
Args:
img (numpy ndarray): Image to be flipped.
Returns:
numpy ndarray: Vertically flipped image.
"""
if not _is_numpy_image(img):
raise TypeError('img should be numpy Image. Got {}'.format(type(img)))
if img.shape[2] == 1:
return cv2.flip(img, 0)[:, :, np.newaxis]
else:
return cv2.flip(img, 0)
# img[::-1] is much faster, but doesn't work with torch.from_numpy()!
def five_crop(img, size):
"""Crop the given numpy ndarray into four corners and the central crop.
.. Note::
This transform returns a tuple of images and there may be a
mismatch in the number of inputs and targets your ``Dataset`` returns.
Args:
size (sequence or int): Desired output size of the crop. If size is an
int instead of sequence like (h, w), a square crop (size, size) is
made.
Returns:
tuple: tuple (tl, tr, bl, br, center)
Corresponding top left, top right, bottom left, bottom right and center crop.
"""
if isinstance(size, numbers.Number):
size = (int(size), int(size))
else:
assert len(size) == 2, "Please provide only two dimensions (h, w) for size."
h, w = img.shape[0:2]
crop_h, crop_w = size
if crop_w > w or crop_h > h:
raise ValueError("Requested crop size {} is bigger than input size {}".format(size, (h, w)))
tl = crop(img, 0, 0, crop_h, crop_w)
tr = crop(img, 0, w - crop_w, crop_h, crop_w)
bl = crop(img, h - crop_h, 0, crop_h, crop_w)
br = crop(img, h - crop_h, w - crop_w, crop_h, crop_w)
center = center_crop(img, (crop_h, crop_w))
return tl, tr, bl, br, center
def ten_crop(img, size, vertical_flip=False):
r"""Crop the given numpy ndarray into four corners and the central crop plus the
flipped version of these (horizontal flipping is used by default).
.. Note::
This transform returns a tuple of images and there may be a
mismatch in the number of inputs and targets your ``Dataset`` returns.
Args:
size (sequence or int): Desired output size of the crop. If size is an
int instead of sequence like (h, w), a square crop (size, size) is
made.
vertical_flip (bool): Use vertical flipping instead of horizontal
Returns:
tuple: tuple (tl, tr, bl, br, center, tl_flip, tr_flip, bl_flip, br_flip, center_flip)
Corresponding top left, top right, bottom left, bottom right and center crop
and same for the flipped image.
"""
if isinstance(size, numbers.Number):
size = (int(size), int(size))
else:
assert len(size) == 2, "Please provide only two dimensions (h, w) for size."
first_five = five_crop(img, size)
if vertical_flip:
img = vflip(img)
else:
img = hflip(img)
second_five = five_crop(img, size)
return first_five + second_five
def adjust_brightness(img, brightness_factor):
"""Adjust brightness of an Image.
Args:
img (numpy ndarray): numpy ndarray to be adjusted.
brightness_factor (float): How much to adjust the brightness. Can be
any non negative number. 0 gives a black image, 1 gives the
original image while 2 increases the brightness by a factor of 2.
Returns:
numpy ndarray: Brightness adjusted image.
"""
if not _is_numpy_image(img):
raise TypeError('img should be numpy Image. Got {}'.format(type(img)))
table = np.array([i * brightness_factor for i in range(0, 256)]).clip(0, 255).astype('uint8')
# same thing but a bit slower
# cv2.convertScaleAbs(img, alpha=brightness_factor, beta=0)
if img.shape[2] == 1:
return cv2.LUT(img, table)[:, :, np.newaxis]
else:
return cv2.LUT(img, table)
def adjust_contrast(img, contrast_factor):
"""Adjust contrast of an mage.
Args:
img (numpy ndarray): numpy ndarray to be adjusted.
contrast_factor (float): How much to adjust the contrast. Can be any
non negative number. 0 gives a solid gray image, 1 gives the
original image while 2 increases the contrast by a factor of 2.
Returns:
numpy ndarray: Contrast adjusted image.
"""
# much faster to use the LUT construction than anything else I've tried
# it's because you have to change dtypes multiple times
if not _is_numpy_image(img):
raise TypeError('img should be numpy Image. Got {}'.format(type(img)))
# input is RGB
if img.ndim > 2 and img.shape[2] == 3:
mean_value = round(cv2.mean(cv2.cvtColor(img, cv2.COLOR_RGB2GRAY))[0])
elif img.ndim == 2:
# grayscale input
mean_value = round(cv2.mean(img)[0])
else:
# multichannel input
mean_value = round(np.mean(img))
table = np.array([(i - mean_value) * contrast_factor + mean_value for i in range(0, 256)]).clip(0,
255).astype('uint8')
# enhancer = ImageEnhance.Contrast(img)
# img = enhancer.enhance(contrast_factor)
if img.ndim == 2 or img.shape[2] == 1:
return cv2.LUT(img, table)[:, :, np.newaxis]
else:
return cv2.LUT(img, table)
def adjust_saturation(img, saturation_factor):
"""Adjust color saturation of an image.
Args:
img (numpy ndarray): numpy ndarray to be adjusted.
saturation_factor (float): How much to adjust the saturation. 0 will
give a black and white image, 1 will give the original image while
2 will enhance the saturation by a factor of 2.
Returns:
numpy ndarray: Saturation adjusted image.
"""
# ~10ms slower than PIL!
if not _is_numpy_image(img):
raise TypeError('img should be numpy Image. Got {}'.format(type(img)))
img = Image.fromarray(img)
enhancer = ImageEnhance.Color(img)
img = enhancer.enhance(saturation_factor)
return np.array(img)
def adjust_hue(img, hue_factor):
"""Adjust hue of an image.
The image hue is adjusted by converting the image to HSV and
cyclically shifting the intensities in the hue channel (H).
The image is then converted back to original image mode.
`hue_factor` is the amount of shift in H channel and must be in the
interval `[-0.5, 0.5]`.
See `Hue`_ for more details.
.. _Hue: https://en.wikipedia.org/wiki/Hue
Args:
img (numpy ndarray): numpy ndarray to be adjusted.
hue_factor (float): How much to shift the hue channel. Should be in
[-0.5, 0.5]. 0.5 and -0.5 give complete reversal of hue channel in
HSV space in positive and negative direction respectively.
0 means no shift. Therefore, both -0.5 and 0.5 will give an image
with complementary colors while 0 gives the original image.
Returns:
numpy ndarray: Hue adjusted image.
"""
# After testing, found that OpenCV calculates the Hue in a call to
# cv2.cvtColor(..., cv2.COLOR_BGR2HSV) differently from PIL
# This function takes 160ms! should be avoided
if not (-0.5 <= hue_factor <= 0.5):
raise ValueError('hue_factor is not in [-0.5, 0.5].'.format(hue_factor))
if not _is_numpy_image(img):
raise TypeError('img should be numpy Image. Got {}'.format(type(img)))
img = Image.fromarray(img)
input_mode = img.mode
if input_mode in {'L', '1', 'I', 'F'}:
return np.array(img)
h, s, v = img.convert('HSV').split()
np_h = np.array(h, dtype=np.uint8)
# uint8 addition take cares of rotation across boundaries
with np.errstate(over='ignore'):
np_h += np.uint8(hue_factor * 255)
h = Image.fromarray(np_h, 'L')
img = Image.merge('HSV', (h, s, v)).convert(input_mode)
return np.array(img)
def adjust_gamma(img, gamma, gain=1):
r"""Perform gamma correction on an image.
Also known as Power Law Transform. Intensities in RGB mode are adjusted
based on the following equation:
.. math::
I_{\text{out}} = 255 \times \text{gain} \times \left(\frac{I_{\text{in}}}{255}\right)^{\gamma}
See `Gamma Correction`_ for more details.
.. _Gamma Correction: https://en.wikipedia.org/wiki/Gamma_correction
Args:
img (numpy ndarray): numpy ndarray to be adjusted.
gamma (float): Non negative real number, same as :math:`\gamma` in the equation.
gamma larger than 1 make the shadows darker,
while gamma smaller than 1 make dark regions lighter.
gain (float): The constant multiplier.
"""
if not _is_numpy_image(img):
raise TypeError('img should be numpy Image. Got {}'.format(type(img)))
if gamma < 0:
raise ValueError('Gamma should be a non-negative real number')
# from here
# https://stackoverflow.com/questions/33322488/how-to-change-image-illumination-in-opencv-python/41061351
table = np.array([((i / 255.0)**gamma) * 255 * gain for i in np.arange(0, 256)]).astype('uint8')
if img.shape[2] == 1:
return cv2.LUT(img, table)[:, :, np.newaxis]
else:
return cv2.LUT(img, table)
def rotate(img, angle, resample=False, expand=False, center=None):
"""Rotate the image by angle.
Args:
img (numpy ndarray): numpy ndarray to be rotated.
angle (float or int): In degrees degrees counter clockwise order.
resample (``PIL.Image.NEAREST`` or ``PIL.Image.BILINEAR`` or ``PIL.Image.BICUBIC``, optional):
An optional resampling filter. See `filters`_ for more information.
If omitted, or if the image has mode "1" or "P", it is set to ``PIL.Image.NEAREST``.
expand (bool, optional): Optional expansion flag.
If true, expands the output image to make it large enough to hold the entire rotated image.
If false or omitted, make the output image the same size as the input image.
Note that the expand flag assumes rotation around the center and no translation.
center (2-tuple, optional): Optional center of rotation.
Origin is the upper left corner.
Default is the center of the image.
.. _filters: https://pillow.readthedocs.io/en/latest/handbook/concepts.html#filters
"""
if not _is_numpy_image(img):
raise TypeError('img should be numpy Image. Got {}'.format(type(img)))
rows, cols = img.shape[0:2]
if center is None:
center = (cols / 2, rows / 2)
M = cv2.getRotationMatrix2D(center, angle, 1)
if img.shape[2] == 1:
return cv2.warpAffine(img, M, (cols, rows))[:, :, np.newaxis]
else:
return cv2.warpAffine(img, M, (cols, rows))
def _get_affine_matrix(center, angle, translate, scale, shear):
# Helper method to compute matrix for affine transformation
# We need compute affine transformation matrix: M = T * C * RSS * C^-1
# where T is translation matrix: [1, 0, tx | 0, 1, ty | 0, 0, 1]
# C is translation matrix to keep center: [1, 0, cx | 0, 1, cy | 0, 0, 1]
# RSS is rotation with scale and shear matrix
# RSS(a, scale, shear) = [ cos(a)*scale -sin(a + shear)*scale 0]
# [ sin(a)*scale cos(a + shear)*scale 0]
# [ 0 0 1]
angle = math.radians(angle)
shear = math.radians(shear)
# scale = 1.0 / scale
T = np.array([[1, 0, translate[0]], [0, 1, translate[1]], [0, 0, 1]])
C = np.array([[1, 0, center[0]], [0, 1, center[1]], [0, 0, 1]])
RSS = np.array([[math.cos(angle) * scale, -math.sin(angle + shear) * scale, 0],
[math.sin(angle) * scale, math.cos(angle + shear) * scale, 0], [0, 0, 1]])
matrix = T @ C @ RSS @ np.linalg.inv(C)
return matrix[:2, :]
def affine(img, angle, translate, scale, shear, interpolation=cv2.INTER_LINEAR, mode=cv2.BORDER_CONSTANT, fillcolor=0):
"""Apply affine transformation on the image keeping image center invariant
Args:
img (numpy ndarray): numpy ndarray to be transformed.
angle (float or int): rotation angle in degrees between -180 and 180, clockwise direction.
translate (list or tuple of integers): horizontal and vertical translations (post-rotation translation)
scale (float): overall scale
shear (float): shear angle value in degrees between -180 to 180, clockwise direction.
interpolation (``cv2.INTER_NEAREST` or ``cv2.INTER_LINEAR`` or ``cv2.INTER_AREA``, ``cv2.INTER_CUBIC``):
An optional resampling filter.
See `filters`_ for more information.
If omitted, it is set to ``cv2.INTER_CUBIC``, for bicubic interpolation.
mode (``cv2.BORDER_CONSTANT`` or ``cv2.BORDER_REPLICATE`` or ``cv2.BORDER_REFLECT`` or ``cv2.BORDER_REFLECT_101``)
Method for filling in border regions.
Defaults to cv2.BORDER_CONSTANT, meaning areas outside the image are filled with a value (val, default 0)
val (int): Optional fill color for the area outside the transform in the output image. Default: 0
"""
if not _is_numpy_image(img):
raise TypeError('img should be numpy Image. Got {}'.format(type(img)))
assert isinstance(translate, (tuple, list)) and len(translate) == 2, \
"Argument translate should be a list or tuple of length 2"
assert scale > 0.0, "Argument scale should be positive"
output_size = img.shape[0:2]
center = (img.shape[1] * 0.5 + 0.5, img.shape[0] * 0.5 + 0.5)
matrix = _get_affine_matrix(center, angle, translate, scale, shear)
if img.shape[2] == 1:
return cv2.warpAffine(img, matrix, output_size[::-1], interpolation, borderMode=mode,
borderValue=fillcolor)[:, :, np.newaxis]
else:
return cv2.warpAffine(img, matrix, output_size[::-1], interpolation, borderMode=mode, borderValue=fillcolor)
def to_grayscale(img, num_output_channels: int = 1):
"""Convert image to grayscale version of image.
Args:
img (numpy ndarray): Image to be converted to grayscale.
num_output_channels: int
if 1 : returned image is single channel
if 3 : returned image is 3 channel with r = g = b
Returns:
numpy ndarray: Grayscale version of the image.
"""
if not _is_numpy_image(img):
raise TypeError('img should be numpy ndarray. Got {}'.format(type(img)))
if num_output_channels == 1:
img = cv2.cvtColor(img, cv2.COLOR_RGB2GRAY)[:, :, np.newaxis]
elif num_output_channels == 3:
# much faster than doing cvtColor to go back to gray
img = np.broadcast_to(cv2.cvtColor(img, cv2.COLOR_RGB2GRAY)[:, :, np.newaxis], img.shape)
return img
|