Spaces:
Running
on
Zero
Running
on
Zero
File size: 12,077 Bytes
a3a3ae4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 |
from typing import Dict, Iterator, List, Optional, Tuple, Union
import numpy as np
import torch
import torch.nn as nn
import torchvision
from einops import rearrange
from matplotlib import colormaps
from matplotlib import pyplot as plt
from ....util import default, instantiate_from_config
from ..lpips.loss.lpips import LPIPS
from ..lpips.model.model import weights_init
from ..lpips.vqperceptual import hinge_d_loss, vanilla_d_loss
class GeneralLPIPSWithDiscriminator(nn.Module):
def __init__(
self,
disc_start: int,
logvar_init: float = 0.0,
disc_num_layers: int = 3,
disc_in_channels: int = 3,
disc_factor: float = 1.0,
disc_weight: float = 1.0,
perceptual_weight: float = 1.0,
disc_loss: str = "hinge",
scale_input_to_tgt_size: bool = False,
dims: int = 2,
learn_logvar: bool = False,
regularization_weights: Union[None, Dict[str, float]] = None,
additional_log_keys: Optional[List[str]] = None,
discriminator_config: Optional[Dict] = None,
):
super().__init__()
self.dims = dims
if self.dims > 2:
print(
f"running with dims={dims}. This means that for perceptual loss "
f"calculation, the LPIPS loss will be applied to each frame "
f"independently."
)
self.scale_input_to_tgt_size = scale_input_to_tgt_size
assert disc_loss in ["hinge", "vanilla"]
self.perceptual_loss = LPIPS().eval()
self.perceptual_weight = perceptual_weight
# output log variance
self.logvar = nn.Parameter(
torch.full((), logvar_init), requires_grad=learn_logvar
)
self.learn_logvar = learn_logvar
discriminator_config = default(
discriminator_config,
{
"target": "sgm.modules.autoencoding.lpips.model.model.NLayerDiscriminator",
"params": {
"input_nc": disc_in_channels,
"n_layers": disc_num_layers,
"use_actnorm": False,
},
},
)
self.discriminator = instantiate_from_config(discriminator_config).apply(
weights_init
)
self.discriminator_iter_start = disc_start
self.disc_loss = hinge_d_loss if disc_loss == "hinge" else vanilla_d_loss
self.disc_factor = disc_factor
self.discriminator_weight = disc_weight
self.regularization_weights = default(regularization_weights, {})
self.forward_keys = [
"optimizer_idx",
"global_step",
"last_layer",
"split",
"regularization_log",
]
self.additional_log_keys = set(default(additional_log_keys, []))
self.additional_log_keys.update(set(self.regularization_weights.keys()))
def get_trainable_parameters(self) -> Iterator[nn.Parameter]:
return self.discriminator.parameters()
def get_trainable_autoencoder_parameters(self) -> Iterator[nn.Parameter]:
if self.learn_logvar:
yield self.logvar
yield from ()
@torch.no_grad()
def log_images(
self, inputs: torch.Tensor, reconstructions: torch.Tensor
) -> Dict[str, torch.Tensor]:
# calc logits of real/fake
logits_real = self.discriminator(inputs.contiguous().detach())
if len(logits_real.shape) < 4:
# Non patch-discriminator
return dict()
logits_fake = self.discriminator(reconstructions.contiguous().detach())
# -> (b, 1, h, w)
# parameters for colormapping
high = max(logits_fake.abs().max(), logits_real.abs().max()).item()
cmap = colormaps["PiYG"] # diverging colormap
def to_colormap(logits: torch.Tensor) -> torch.Tensor:
"""(b, 1, ...) -> (b, 3, ...)"""
logits = (logits + high) / (2 * high)
logits_np = cmap(logits.cpu().numpy())[..., :3] # truncate alpha channel
# -> (b, 1, ..., 3)
logits = torch.from_numpy(logits_np).to(logits.device)
return rearrange(logits, "b 1 ... c -> b c ...")
logits_real = torch.nn.functional.interpolate(
logits_real,
size=inputs.shape[-2:],
mode="nearest",
antialias=False,
)
logits_fake = torch.nn.functional.interpolate(
logits_fake,
size=reconstructions.shape[-2:],
mode="nearest",
antialias=False,
)
# alpha value of logits for overlay
alpha_real = torch.abs(logits_real) / high
alpha_fake = torch.abs(logits_fake) / high
# -> (b, 1, h, w) in range [0, 0.5]
# alpha value of lines don't really matter, since the values are the same
# for both images and logits anyway
grid_alpha_real = torchvision.utils.make_grid(alpha_real, nrow=4)
grid_alpha_fake = torchvision.utils.make_grid(alpha_fake, nrow=4)
grid_alpha = 0.8 * torch.cat((grid_alpha_real, grid_alpha_fake), dim=1)
# -> (1, h, w)
# blend logits and images together
# prepare logits for plotting
logits_real = to_colormap(logits_real)
logits_fake = to_colormap(logits_fake)
# resize logits
# -> (b, 3, h, w)
# make some grids
# add all logits to one plot
logits_real = torchvision.utils.make_grid(logits_real, nrow=4)
logits_fake = torchvision.utils.make_grid(logits_fake, nrow=4)
# I just love how torchvision calls the number of columns `nrow`
grid_logits = torch.cat((logits_real, logits_fake), dim=1)
# -> (3, h, w)
grid_images_real = torchvision.utils.make_grid(0.5 * inputs + 0.5, nrow=4)
grid_images_fake = torchvision.utils.make_grid(
0.5 * reconstructions + 0.5, nrow=4
)
grid_images = torch.cat((grid_images_real, grid_images_fake), dim=1)
# -> (3, h, w) in range [0, 1]
grid_blend = grid_alpha * grid_logits + (1 - grid_alpha) * grid_images
# Create labeled colorbar
dpi = 100
height = 128 / dpi
width = grid_logits.shape[2] / dpi
fig, ax = plt.subplots(figsize=(width, height), dpi=dpi)
img = ax.imshow(np.array([[-high, high]]), cmap=cmap)
plt.colorbar(
img,
cax=ax,
orientation="horizontal",
fraction=0.9,
aspect=width / height,
pad=0.0,
)
img.set_visible(False)
fig.tight_layout()
fig.canvas.draw()
# manually convert figure to numpy
cbar_np = np.frombuffer(fig.canvas.tostring_rgb(), dtype=np.uint8)
cbar_np = cbar_np.reshape(fig.canvas.get_width_height()[::-1] + (3,))
cbar = torch.from_numpy(cbar_np.copy()).to(grid_logits.dtype) / 255.0
cbar = rearrange(cbar, "h w c -> c h w").to(grid_logits.device)
# Add colorbar to plot
annotated_grid = torch.cat((grid_logits, cbar), dim=1)
blended_grid = torch.cat((grid_blend, cbar), dim=1)
return {
"vis_logits": 2 * annotated_grid[None, ...] - 1,
"vis_logits_blended": 2 * blended_grid[None, ...] - 1,
}
def calculate_adaptive_weight(
self, nll_loss: torch.Tensor, g_loss: torch.Tensor, last_layer: torch.Tensor
) -> torch.Tensor:
nll_grads = torch.autograd.grad(nll_loss, last_layer, retain_graph=True)[0]
g_grads = torch.autograd.grad(g_loss, last_layer, retain_graph=True)[0]
d_weight = torch.norm(nll_grads) / (torch.norm(g_grads) + 1e-4)
d_weight = torch.clamp(d_weight, 0.0, 1e4).detach()
d_weight = d_weight * self.discriminator_weight
return d_weight
def forward(
self,
inputs: torch.Tensor,
reconstructions: torch.Tensor,
*, # added because I changed the order here
regularization_log: Dict[str, torch.Tensor],
optimizer_idx: int,
global_step: int,
last_layer: torch.Tensor,
split: str = "train",
weights: Union[None, float, torch.Tensor] = None,
) -> Tuple[torch.Tensor, dict]:
if self.scale_input_to_tgt_size:
inputs = torch.nn.functional.interpolate(
inputs, reconstructions.shape[2:], mode="bicubic", antialias=True
)
if self.dims > 2:
inputs, reconstructions = map(
lambda x: rearrange(x, "b c t h w -> (b t) c h w"),
(inputs, reconstructions),
)
rec_loss = torch.abs(inputs.contiguous() - reconstructions.contiguous())
if self.perceptual_weight > 0:
p_loss = self.perceptual_loss(
inputs.contiguous(), reconstructions.contiguous()
)
rec_loss = rec_loss + self.perceptual_weight * p_loss
nll_loss, weighted_nll_loss = self.get_nll_loss(rec_loss, weights)
# now the GAN part
if optimizer_idx == 0:
# generator update
if global_step >= self.discriminator_iter_start or not self.training:
logits_fake = self.discriminator(reconstructions.contiguous())
g_loss = -torch.mean(logits_fake)
if self.training:
d_weight = self.calculate_adaptive_weight(
nll_loss, g_loss, last_layer=last_layer
)
else:
d_weight = torch.tensor(1.0)
else:
d_weight = torch.tensor(0.0)
g_loss = torch.tensor(0.0, requires_grad=True)
loss = weighted_nll_loss + d_weight * self.disc_factor * g_loss
log = dict()
for k in regularization_log:
if k in self.regularization_weights:
loss = loss + self.regularization_weights[k] * regularization_log[k]
if k in self.additional_log_keys:
log[f"{split}/{k}"] = regularization_log[k].detach().float().mean()
log.update(
{
f"{split}/loss/total": loss.clone().detach().mean(),
f"{split}/loss/nll": nll_loss.detach().mean(),
f"{split}/loss/rec": rec_loss.detach().mean(),
f"{split}/loss/g": g_loss.detach().mean(),
f"{split}/scalars/logvar": self.logvar.detach(),
f"{split}/scalars/d_weight": d_weight.detach(),
}
)
return loss, log
elif optimizer_idx == 1:
# second pass for discriminator update
logits_real = self.discriminator(inputs.contiguous().detach())
logits_fake = self.discriminator(reconstructions.contiguous().detach())
if global_step >= self.discriminator_iter_start or not self.training:
d_loss = self.disc_factor * self.disc_loss(logits_real, logits_fake)
else:
d_loss = torch.tensor(0.0, requires_grad=True)
log = {
f"{split}/loss/disc": d_loss.clone().detach().mean(),
f"{split}/logits/real": logits_real.detach().mean(),
f"{split}/logits/fake": logits_fake.detach().mean(),
}
return d_loss, log
else:
raise NotImplementedError(f"Unknown optimizer_idx {optimizer_idx}")
def get_nll_loss(
self,
rec_loss: torch.Tensor,
weights: Optional[Union[float, torch.Tensor]] = None,
) -> Tuple[torch.Tensor, torch.Tensor]:
nll_loss = rec_loss / torch.exp(self.logvar) + self.logvar
weighted_nll_loss = nll_loss
if weights is not None:
weighted_nll_loss = weights * nll_loss
weighted_nll_loss = torch.sum(weighted_nll_loss) / weighted_nll_loss.shape[0]
nll_loss = torch.sum(nll_loss) / nll_loss.shape[0]
return nll_loss, weighted_nll_loss
|