Spaces:
Running
on
T4
Running
on
T4
File size: 2,044 Bytes
a225caf 7360ef0 2064a53 7360ef0 a225caf ae9601e 7360ef0 ae9601e 7360ef0 a225caf ae9601e 257403d 7360ef0 a225caf 7360ef0 a225caf 7360ef0 a225caf 7360ef0 a225caf 7360ef0 a225caf 7360ef0 a225caf 2064a53 20d974d a225caf 7360ef0 a225caf 7360ef0 a225caf 7360ef0 a225caf 7360ef0 a225caf 7360ef0 a225caf 7360ef0 a225caf 7360ef0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 |
import gradio as gr
from gradio_client import Client, handle_file
MODELS = {"SmolVLM-Instruct": "akhaliq/SmolVLM-Instruct"}
def create_chat_fn(client):
def chat(message, history):
# Extract text and files from the message
text = message.get("text", "")
files = message.get("files", [])
# Handle file uploads if present
processed_files = [handle_file(f) for f in files]
response = client.predict(
message={"text": text, "files": processed_files},
system_prompt="You are a helpful AI assistant.",
temperature=0.7,
max_new_tokens=1024,
top_k=40,
repetition_penalty=1.1,
top_p=0.95,
api_name="/chat",
)
return response
return chat
def set_client_for_session(model_name, request: gr.Request):
headers = {}
if request and hasattr(request, "headers"):
x_ip_token = request.headers.get("x-ip-token")
if x_ip_token:
headers["X-IP-Token"] = x_ip_token
return Client(MODELS[model_name], headers=headers)
def safe_chat_fn(message, history, client):
if client is None:
return "Error: Client not initialized. Please refresh the page."
try:
return create_chat_fn(client)(message, history)
except Exception as e:
print(f"Error during chat: {e!s}")
return f"Error during chat: {e!s}"
with gr.Blocks() as demo:
client = gr.State()
model_dropdown = gr.Dropdown(
choices=list(MODELS.keys()), value="SmolVLM-Instruct", label="Select Model", interactive=True
)
chat_interface = gr.ChatInterface(fn=safe_chat_fn, additional_inputs=[client], multimodal=True)
# Update client when model changes
model_dropdown.change(fn=set_client_for_session, inputs=[model_dropdown], outputs=[client])
# Initialize client on page load
demo.load(fn=set_client_for_session, inputs=[gr.State("SmolVLM-Instruct")], outputs=[client])
if __name__ == "__main__":
demo.launch()
|