Spaces:
Running
on
CPU Upgrade
Running
on
CPU Upgrade
File size: 6,750 Bytes
fbaae9e 4e6f99b fbaae9e 4e6f99b cef6785 fbaae9e cef6785 fbaae9e cef6785 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 |
import gradio as gr
from gradio_webrtc import WebRTC, StreamHandler, get_twilio_turn_credentials
import websockets.sync.client
import numpy as np
import json
import base64
import os
from dotenv import load_dotenv
class GeminiConfig:
def __init__(self):
load_dotenv()
self.api_key = self._get_api_key()
self.host = 'generativelanguage.googleapis.com'
self.model = 'models/gemini-2.0-flash-exp'
self.ws_url = f'wss://{self.host}/ws/google.ai.generativelanguage.v1alpha.GenerativeService.BidiGenerateContent?key={self.api_key}'
def _get_api_key(self):
api_key = os.getenv('GOOGLE_API_KEY')
if not api_key:
raise ValueError("GOOGLE_API_KEY not found in environment variables. Please set it in your .env file.")
return api_key
class AudioProcessor:
@staticmethod
def encode_audio(data, sample_rate):
encoded = base64.b64encode(data.tobytes()).decode('UTF-8')
return {
'realtimeInput': {
'mediaChunks': [{
'mimeType': f'audio/pcm;rate={sample_rate}',
'data': encoded,
}],
},
}
@staticmethod
def process_audio_response(data):
audio_data = base64.b64decode(data)
return np.frombuffer(audio_data, dtype=np.int16)
class GeminiHandler(StreamHandler):
def __init__(self,
expected_layout="mono",
output_sample_rate=24000,
output_frame_size=480) -> None:
super().__init__(expected_layout, output_sample_rate, output_frame_size,
input_sample_rate=24000)
self.config = GeminiConfig()
self.ws = None
self.all_output_data = None
self.audio_processor = AudioProcessor()
def copy(self):
return GeminiHandler(
expected_layout=self.expected_layout,
output_sample_rate=self.output_sample_rate,
output_frame_size=self.output_frame_size
)
def _initialize_websocket(self):
try:
self.ws = websockets.sync.client.connect(
self.config.ws_url,
timeout=30
)
initial_request = {
'setup': {
'model': self.config.model,
}
}
self.ws.send(json.dumps(initial_request))
setup_response = json.loads(self.ws.recv())
print(f"Setup response: {setup_response}")
except websockets.exceptions.WebSocketException as e:
print(f"WebSocket connection failed: {str(e)}")
self.ws = None
except Exception as e:
print(f"Setup failed: {str(e)}")
self.ws = None
def receive(self, frame: tuple[int, np.ndarray]) -> None:
try:
if not self.ws:
self._initialize_websocket()
_, array = frame
array = array.squeeze()
audio_message = self.audio_processor.encode_audio(array, self.output_sample_rate)
self.ws.send(json.dumps(audio_message))
except Exception as e:
print(f"Error in receive: {str(e)}")
if self.ws:
self.ws.close()
self.ws = None
def _process_server_content(self, content):
for part in content.get('parts', []):
data = part.get('inlineData', {}).get('data', '')
if data:
audio_array = self.audio_processor.process_audio_response(data)
if self.all_output_data is None:
self.all_output_data = audio_array
else:
self.all_output_data = np.concatenate((self.all_output_data, audio_array))
while self.all_output_data.shape[-1] >= self.output_frame_size:
yield (self.output_sample_rate,
self.all_output_data[:self.output_frame_size].reshape(1, -1))
self.all_output_data = self.all_output_data[self.output_frame_size:]
def generator(self):
while True:
if not self.ws:
print("WebSocket not connected")
yield None
continue
try:
message = self.ws.recv(timeout=5)
msg = json.loads(message)
if 'serverContent' in msg:
content = msg['serverContent'].get('modelTurn', {})
yield from self._process_server_content(content)
except TimeoutError:
print("Timeout waiting for server response")
yield None
except Exception as e:
print(f"Error in generator: {str(e)}")
yield None
def emit(self) -> tuple[int, np.ndarray] | None:
if not self.ws:
return None
if not hasattr(self, '_generator'):
self._generator = self.generator()
try:
return next(self._generator)
except StopIteration:
self.reset()
return None
def reset(self) -> None:
if hasattr(self, '_generator'):
delattr(self, '_generator')
self.all_output_data = None
def shutdown(self) -> None:
if self.ws:
self.ws.close()
def check_connection(self):
try:
if not self.ws or self.ws.closed:
self._initialize_websocket()
return True
except Exception as e:
print(f"Connection check failed: {str(e)}")
return False
class GeminiVoiceChat:
def __init__(self):
load_dotenv()
self.demo = self._create_interface()
def _create_interface(self):
with gr.Blocks() as demo:
gr.HTML("""
<div style='text-align: center'>
<h1>Gemini 2.0 Voice Chat</h1>
<p>Speak with Gemini using real-time audio streaming</p>
</div>
""")
webrtc = WebRTC(
label="Conversation",
modality="audio",
mode="send-receive",
rtc_configuration=get_twilio_turn_credentials()
)
webrtc.stream(
GeminiHandler(),
inputs=[webrtc],
outputs=[webrtc],
time_limit=90,
concurrency_limit=10
)
return demo
def launch(self):
self.demo.launch()
# Create and expose the demo instance
def demo():
chat = GeminiVoiceChat()
return chat.demo
# This is what will be imported by app.py
demo = demo() |