Ahsen Khaliq
Update app.py
a803368
raw
history blame
3.68 kB
import os
os.system("git clone https://github.com/v-iashin/SpecVQGAN")
os.system("pip install pytorch-lightning==1.2.10 omegaconf==2.0.6 streamlit==0.80 matplotlib==3.4.1 albumentations==0.5.2 SoundFile torch torchvision librosa gdown")
from pathlib import Path
import soundfile
import torch
import gradio as gr
import sys
sys.path.append('./SpecVQGAN')
from feature_extraction.demo_utils import (calculate_codebook_bitrate,
extract_melspectrogram,
get_audio_file_bitrate,
get_duration,
load_neural_audio_codec)
from sample_visualization import tensor_to_plt
from torch.utils.data.dataloader import default_collate
os.chdir("SpecVQGAN")
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
os.system("gdown https://drive.google.com/uc?id=1KGof44Sx4yIn4Hohpp9-VVTh2zGucKeY")
model_name = '2021-05-19T22-16-54_vggsound_codebook'
log_dir = './logs'
# loading the models might take a few minutes
config, model, vocoder = load_neural_audio_codec(model_name, log_dir, device)
def inference(audio):
# Select an Audio
input_wav = audio.name
# Spectrogram Extraction
model_sr = config.data.params.sample_rate
duration = get_duration(input_wav)
spec = extract_melspectrogram(input_wav, sr=model_sr, duration=duration)
print(f'Audio Duration: {duration} seconds')
print('Original Spectrogram Shape:', spec.shape)
# Prepare Input
spectrogram = {'input': spec}
batch = default_collate([spectrogram])
batch['image'] = batch['input'].to(device)
x = model.get_input(batch, 'image')
with torch.no_grad():
quant_z, diff, info = model.encode(x)
xrec = model.decode(quant_z)
print('Compressed representation (it is all you need to recover the audio):')
F, T = quant_z.shape[-2:]
print(info[2].reshape(F, T))
# Calculate Bitrate
bitrate = calculate_codebook_bitrate(duration, quant_z, model.quantize.n_e)
orig_bitrate = get_audio_file_bitrate(input_wav)
# Save and Display
x = x.squeeze(0)
xrec = xrec.squeeze(0)
# specs are in [-1, 1], making them in [0, 1]
wav_x = vocoder((x + 1) / 2).squeeze().detach().cpu().numpy()
wav_xrec = vocoder((xrec + 1) / 2).squeeze().detach().cpu().numpy()
# Save paths
x_save_path = 'vocoded_orig_spec.wav'
xrec_save_path = f'specvqgan_{bitrate:.2f}kbps.wav'
# Save
soundfile.write(x_save_path, wav_x, model_sr, 'PCM_16')
soundfile.write(xrec_save_path, wav_xrec, model_sr, 'PCM_16')
return 'vocoded_orig_spec.wav', f'specvqgan_{bitrate:.2f}kbps.wav', tensor_to_plt(x, flip_dims=(2,)), tensor_to_plt(xrec, flip_dims=(2,))
title = "SpecVQGAN Neural Audio Codec"
description = "Gradio demo for Spectrogram VQGAN as a Neural Audio Codec. To use it, simply add your audio, or click one of the examples to load them. Read more at the links below."
article = "<p style='text-align: center'><a href='https://arxiv.org/abs/2110.08791' target='_blank'>Taming Visually Guided Sound Generation</a> | <a href='https://github.com/v-iashin/SpecVQGAN' target='_blank'>Github Repo</a></p>"
examples=[['examples.wav']]
gr.Interface(
inference,
gr.inputs.Audio(type="file", label="Input Audio"),
[gr.outputs.Audio(type="file", label="Original audio"),gr.outputs.Audio(type="file", label="Reconstructed audio"),gr.outputs.Image(type="plot", label="Original Spectrogram:"),gr.outputs.Image(type="plot",label="Reconstructed Spectrogram:")],
title=title,
description=description,
article=article,
enable_queue=True,
examples=examples
).launch(debug=True)