Spaces:
Running
on
Zero
Running
on
Zero
File size: 2,097 Bytes
259d504 86f16e5 259d504 86f16e5 259d504 86f16e5 259d504 86f16e5 259d504 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 |
import gradio as gr
from transformers import AutoModelForCausalLM, AutoProcessor, GenerationConfig
from PIL import Image
import torch
# Load the processor and model
processor = AutoProcessor.from_pretrained(
'allenai/Molmo-7B-D-0924',
trust_remote_code=True,
torch_dtype='auto',
device_map='auto'
)
model = AutoModelForCausalLM.from_pretrained(
'allenai/Molmo-7B-D-0924',
trust_remote_code=True,
torch_dtype='auto',
device_map='auto'
)
def process_image_and_text(image, text):
# Process the image and text
inputs = processor.process(
images=[Image.fromarray(image)],
text=text
)
# Move inputs to the correct device and make a batch of size 1
inputs = {k: v.to(model.device).unsqueeze(0) for k, v in inputs.items()}
# Generate output
output = model.generate_from_batch(
inputs,
GenerationConfig(max_new_tokens=200, stop_strings="<|endoftext|>"),
tokenizer=processor.tokenizer
)
# Only get generated tokens; decode them to text
generated_tokens = output[0, inputs['input_ids'].size(1):]
generated_text = processor.tokenizer.decode(generated_tokens, skip_special_tokens=True)
return generated_text
def chatbot(image, text, history):
if image is None:
return history + [("Please upload an image first.", None)]
response = process_image_and_text(image, text)
history.append((text, response))
return history
# Define the Gradio interface
with gr.Blocks() as demo:
gr.Markdown("# Image Chatbot with Molmo-7B-D-0924")
with gr.Row():
image_input = gr.Image(type="numpy")
chatbot_output = gr.Chatbot()
text_input = gr.Textbox(placeholder="Ask a question about the image...")
submit_button = gr.Button("Submit")
state = gr.State([])
submit_button.click(
chatbot,
inputs=[image_input, text_input, state],
outputs=[chatbot_output]
)
text_input.submit(
chatbot,
inputs=[image_input, text_input, state],
outputs=[chatbot_output]
)
demo.launch() |