File size: 1,879 Bytes
56a97f7
 
 
 
 
 
 
 
 
 
 
 
1433399
56a97f7
 
 
 
6321605
56a97f7
241373a
56a97f7
 
 
 
442b118
56a97f7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6321605
 
 
 
56a97f7
f6edc5a
 
e26e5eb
56a97f7
9df28ad
c586b21
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
import os
os.system("git clone https://github.com/bryandlee/animegan2-pytorch")
os.system("gdown https://drive.google.com/uc?id=1WK5Mdt6mwlcsqCZMHkCUSDJxN1UyFi0-")
os.system("gdown https://drive.google.com/uc?id=18H3iK09_d54qEDoWIc82SyWB2xun4gjU")
import sys
sys.path.append("animegan2-pytorch")

import torch
torch.set_grad_enabled(False)

from model import Generator

device = torch.device("cuda" if torch.cuda.is_available() else "cpu")

model = Generator().eval().to(device)
model.load_state_dict(torch.load("face_paint_512_v2_0.pt"))

from PIL import Image
from torchvision.transforms.functional import to_tensor, to_pil_image
import gradio as gr

def face2paint(
    img: Image.Image,
    size: int,
    side_by_side: bool = False,
) -> Image.Image:


    input = to_tensor(img).unsqueeze(0) * 2 - 1
    output = model(input.to(device)).cpu()[0]

    if side_by_side:
        output = torch.cat([input[0], output], dim=2)

    output = (output * 0.5 + 0.5).clip(0, 1)

    return to_pil_image(output)
    



import os
import collections
from typing import Union, List
import numpy as np
from PIL import Image


import PIL.Image
import PIL.ImageFile
import numpy as np
import scipy.ndimage
    

import requests

def inference(img):
    out = face2paint(img, 512)
    return out
      
  
title = "Animeganv2"
description = "Gradio demo for AnimeGanv2 Face Portrait v2. To use it, simply upload your image, or click one of the examples to load them. Read more at the links below."
article = "<p style='text-align: center'><a href='https://github.com/bryandlee/animegan2-pytorch' target='_blank'>Github Repo</a></p>"

examples=[['groot.jpeg','elon.png', 'bill.png','tony.png']]
gr.Interface(inference, gr.inputs.Image(type="pil",shape=(512,512)), gr.outputs.Image(type="pil"),title=title,description=description,article=article,examples=examples,enable_queue=True).launch()