H2OGPT / make_db.py
akashkj's picture
Upload folder using huggingface_hub
3f7cfab
import os
import fire
from gpt_langchain import path_to_docs, get_db, get_some_dbs_from_hf, all_db_zips, some_db_zips, \
get_embedding, add_to_db, create_or_update_db
from utils import get_ngpus_vis
def glob_to_db(user_path, chunk=True, chunk_size=512, verbose=False,
fail_any_exception=False, n_jobs=-1, url=None,
enable_captions=True, captions_model=None,
caption_loader=None,
enable_ocr=False):
sources1 = path_to_docs(user_path, verbose=verbose, fail_any_exception=fail_any_exception,
n_jobs=n_jobs,
chunk=chunk,
chunk_size=chunk_size, url=url,
enable_captions=enable_captions,
captions_model=captions_model,
caption_loader=caption_loader,
enable_ocr=enable_ocr,
)
return sources1
def make_db_main(use_openai_embedding: bool = False,
hf_embedding_model: str = None,
persist_directory: str = 'db_dir_UserData',
user_path: str = 'user_path',
url: str = None,
add_if_exists: bool = True,
collection_name: str = 'UserData',
verbose: bool = False,
chunk: bool = True,
chunk_size: int = 512,
fail_any_exception: bool = False,
download_all: bool = False,
download_some: bool = False,
download_one: str = None,
download_dest: str = "./",
n_jobs: int = -1,
enable_captions: bool = True,
captions_model: str = "Salesforce/blip-image-captioning-base",
pre_load_caption_model: bool = False,
caption_gpu: bool = True,
enable_ocr: bool = False,
db_type: str = 'chroma',
):
"""
# To make UserData db for generate.py, put pdfs, etc. into path user_path and run:
python make_db.py
# once db is made, can use in generate.py like:
python generate.py --base_model=h2oai/h2ogpt-oig-oasst1-512-6_9b --langchain_mode=UserData
or zip-up the db_dir_UserData and share:
zip -r db_dir_UserData.zip db_dir_UserData
# To get all db files (except large wiki_full) do:
python make_db.py --download_some=True
# To get a single db file from HF:
python make_db.py --download_one=db_dir_DriverlessAI_docs.zip
:param use_openai_embedding: Whether to use OpenAI embedding
:param hf_embedding_model: HF embedding model to use. Like generate.py, uses 'hkunlp/instructor-large' if have GPUs, else "sentence-transformers/all-MiniLM-L6-v2"
:param persist_directory: where to persist db
:param user_path: where to pull documents from (None means url is not None. If url is not None, this is ignored.)
:param url: url to generate documents from (None means user_path is not None)
:param add_if_exists: Add to db if already exists, but will not add duplicate sources
:param collection_name: Collection name for new db if not adding
:param verbose: whether to show verbose messages
:param chunk: whether to chunk data
:param chunk_size: chunk size for chunking
:param fail_any_exception: whether to fail if any exception hit during ingestion of files
:param download_all: whether to download all (including 23GB Wikipedia) example databases from h2o.ai HF
:param download_some: whether to download some small example databases from h2o.ai HF
:param download_one: whether to download one chosen example databases from h2o.ai HF
:param download_dest: Destination for downloads
:param n_jobs: Number of cores to use for ingesting multiple files
:param enable_captions: Whether to enable captions on images
:param captions_model: See generate.py
:param pre_load_caption_model: See generate.py
:param caption_gpu: Caption images on GPU if present
:param enable_ocr: Whether to enable OCR on images
:param db_type: Type of db to create. Currently only 'chroma' and 'weaviate' is supported.
:return: None
"""
db = None
# match behavior of main() in generate.py for non-HF case
n_gpus = get_ngpus_vis()
if n_gpus == 0:
if hf_embedding_model is None:
# if no GPUs, use simpler embedding model to avoid cost in time
hf_embedding_model = "sentence-transformers/all-MiniLM-L6-v2"
else:
if hf_embedding_model is None:
# if still None, then set default
hf_embedding_model = 'hkunlp/instructor-large'
if download_all:
print("Downloading all (and unzipping): %s" % all_db_zips, flush=True)
get_some_dbs_from_hf(download_dest, db_zips=all_db_zips)
if verbose:
print("DONE", flush=True)
return db, collection_name
elif download_some:
print("Downloading some (and unzipping): %s" % some_db_zips, flush=True)
get_some_dbs_from_hf(download_dest, db_zips=some_db_zips)
if verbose:
print("DONE", flush=True)
return db, collection_name
elif download_one:
print("Downloading %s (and unzipping)" % download_one, flush=True)
get_some_dbs_from_hf(download_dest, db_zips=[[download_one, '', 'Unknown License']])
if verbose:
print("DONE", flush=True)
return db, collection_name
if enable_captions and pre_load_caption_model:
# preload, else can be too slow or if on GPU have cuda context issues
# Inside ingestion, this will disable parallel loading of multiple other kinds of docs
# However, if have many images, all those images will be handled more quickly by preloaded model on GPU
from image_captions import H2OImageCaptionLoader
caption_loader = H2OImageCaptionLoader(None,
blip_model=captions_model,
blip_processor=captions_model,
caption_gpu=caption_gpu,
).load_model()
else:
if enable_captions:
caption_loader = 'gpu' if caption_gpu else 'cpu'
else:
caption_loader = False
if verbose:
print("Getting sources", flush=True)
assert user_path is not None or url is not None, "Can't have both user_path and url as None"
if not url:
assert os.path.isdir(user_path), "user_path=%s does not exist" % user_path
sources = glob_to_db(user_path, chunk=chunk, chunk_size=chunk_size, verbose=verbose,
fail_any_exception=fail_any_exception, n_jobs=n_jobs, url=url,
enable_captions=enable_captions,
captions_model=captions_model,
caption_loader=caption_loader,
enable_ocr=enable_ocr,
)
exceptions = [x for x in sources if x.metadata.get('exception')]
print("Exceptions: %s" % exceptions, flush=True)
sources = [x for x in sources if 'exception' not in x.metadata]
assert len(sources) > 0, "No sources found"
db = create_or_update_db(db_type, persist_directory, collection_name,
sources, use_openai_embedding, add_if_exists, verbose,
hf_embedding_model)
assert db is not None
if verbose:
print("DONE", flush=True)
return db, collection_name
if __name__ == "__main__":
fire.Fire(make_db_main)