|
""" |
|
Based upon ImageCaptionLoader in LangChain version: langchain/document_loaders/image_captions.py |
|
But accepts preloaded model to avoid slowness in use and CUDA forking issues |
|
|
|
Loader that loads image captions |
|
By default, the loader utilizes the pre-trained BLIP image captioning model. |
|
https://huggingface.co/Salesforce/blip-image-captioning-base |
|
|
|
""" |
|
from typing import List, Union, Any, Tuple |
|
|
|
import requests |
|
from langchain.docstore.document import Document |
|
from langchain.document_loaders import ImageCaptionLoader |
|
|
|
from utils import get_device, NullContext |
|
|
|
import pkg_resources |
|
|
|
try: |
|
assert pkg_resources.get_distribution('bitsandbytes') is not None |
|
have_bitsandbytes = True |
|
except (pkg_resources.DistributionNotFound, AssertionError): |
|
have_bitsandbytes = False |
|
|
|
|
|
class H2OImageCaptionLoader(ImageCaptionLoader): |
|
"""Loader that loads the captions of an image""" |
|
|
|
def __init__(self, path_images: Union[str, List[str]] = None, |
|
blip_processor: str = None, |
|
blip_model: str = None, |
|
caption_gpu=True, |
|
load_in_8bit=True, |
|
|
|
load_half=False, |
|
min_new_tokens=20, |
|
max_tokens=50): |
|
if blip_model is None or blip_model is None: |
|
blip_processor = "Salesforce/blip-image-captioning-base" |
|
blip_model = "Salesforce/blip-image-captioning-base" |
|
|
|
super().__init__(path_images, blip_processor, blip_model) |
|
self.blip_processor = blip_processor |
|
self.blip_model = blip_model |
|
self.processor = None |
|
self.model = None |
|
self.caption_gpu = caption_gpu |
|
self.context_class = NullContext |
|
self.device = 'cpu' |
|
self.load_in_8bit = load_in_8bit and have_bitsandbytes |
|
self.load_half = load_half |
|
self.gpu_id = 'auto' |
|
|
|
self.prompt = "image of" |
|
self.min_new_tokens = min_new_tokens |
|
self.max_tokens = max_tokens |
|
|
|
def set_context(self): |
|
if get_device() == 'cuda' and self.caption_gpu: |
|
import torch |
|
n_gpus = torch.cuda.device_count() if torch.cuda.is_available else 0 |
|
if n_gpus > 0: |
|
self.context_class = torch.device |
|
self.device = 'cuda' |
|
|
|
def load_model(self): |
|
try: |
|
import transformers |
|
except ImportError: |
|
raise ValueError( |
|
"`transformers` package not found, please install with " |
|
"`pip install transformers`." |
|
) |
|
self.set_context() |
|
if self.caption_gpu: |
|
if self.gpu_id == 'auto': |
|
|
|
|
|
device_map = {"": 0} |
|
else: |
|
if self.device == 'cuda': |
|
device_map = {"": self.gpu_id} |
|
else: |
|
device_map = {"": 'cpu'} |
|
else: |
|
device_map = {"": 'cpu'} |
|
import torch |
|
with torch.no_grad(): |
|
with self.context_class(self.device): |
|
context_class_cast = NullContext if self.device == 'cpu' else torch.autocast |
|
with context_class_cast(self.device): |
|
if 'blip2' in self.blip_processor.lower(): |
|
from transformers import Blip2Processor, Blip2ForConditionalGeneration |
|
if self.load_half and not self.load_in_8bit: |
|
self.processor = Blip2Processor.from_pretrained(self.blip_processor, |
|
device_map=device_map).half() |
|
self.model = Blip2ForConditionalGeneration.from_pretrained(self.blip_model, |
|
device_map=device_map).half() |
|
else: |
|
self.processor = Blip2Processor.from_pretrained(self.blip_processor, |
|
load_in_8bit=self.load_in_8bit, |
|
device_map=device_map, |
|
) |
|
self.model = Blip2ForConditionalGeneration.from_pretrained(self.blip_model, |
|
load_in_8bit=self.load_in_8bit, |
|
device_map=device_map) |
|
else: |
|
from transformers import BlipForConditionalGeneration, BlipProcessor |
|
self.load_half = False |
|
if self.caption_gpu: |
|
if device_map == 'auto': |
|
|
|
if self.device == 'cuda': |
|
if self.gpu_id == 'auto': |
|
device_map = {"": 0} |
|
else: |
|
device_map = {"": self.gpu_id} |
|
else: |
|
device_map = {"": 'cpu'} |
|
else: |
|
device_map = {"": 'cpu'} |
|
self.processor = BlipProcessor.from_pretrained(self.blip_processor, device_map=device_map) |
|
self.model = BlipForConditionalGeneration.from_pretrained(self.blip_model, |
|
device_map=device_map) |
|
return self |
|
|
|
def set_image_paths(self, path_images: Union[str, List[str]]): |
|
""" |
|
Load from a list of image files |
|
""" |
|
if isinstance(path_images, str): |
|
self.image_paths = [path_images] |
|
else: |
|
self.image_paths = path_images |
|
|
|
def load(self, prompt=None) -> List[Document]: |
|
if self.processor is None or self.model is None: |
|
self.load_model() |
|
results = [] |
|
for path_image in self.image_paths: |
|
caption, metadata = self._get_captions_and_metadata( |
|
model=self.model, processor=self.processor, path_image=path_image, |
|
prompt=prompt, |
|
) |
|
doc = Document(page_content=caption, metadata=metadata) |
|
results.append(doc) |
|
|
|
return results |
|
|
|
def _get_captions_and_metadata( |
|
self, model: Any, processor: Any, path_image: str, |
|
prompt=None) -> Tuple[str, dict]: |
|
""" |
|
Helper function for getting the captions and metadata of an image |
|
""" |
|
if prompt is None: |
|
prompt = self.prompt |
|
try: |
|
from PIL import Image |
|
except ImportError: |
|
raise ValueError( |
|
"`PIL` package not found, please install with `pip install pillow`" |
|
) |
|
|
|
try: |
|
if path_image.startswith("http://") or path_image.startswith("https://"): |
|
image = Image.open(requests.get(path_image, stream=True).raw).convert( |
|
"RGB" |
|
) |
|
else: |
|
image = Image.open(path_image).convert("RGB") |
|
except Exception: |
|
raise ValueError(f"Could not get image data for {path_image}") |
|
|
|
import torch |
|
with torch.no_grad(): |
|
with self.context_class(self.device): |
|
context_class_cast = NullContext if self.device == 'cpu' else torch.autocast |
|
with context_class_cast(self.device): |
|
if self.load_half: |
|
inputs = processor(image, prompt, return_tensors="pt").half() |
|
else: |
|
inputs = processor(image, prompt, return_tensors="pt") |
|
min_length = len(prompt) // 4 + self.min_new_tokens |
|
self.max_tokens = max(self.max_tokens, min_length) |
|
output = model.generate(**inputs, min_length=min_length, max_length=self.max_tokens) |
|
|
|
caption: str = processor.decode(output[0], skip_special_tokens=True) |
|
prompti = caption.find(prompt) |
|
if prompti >= 0: |
|
caption = caption[prompti + len(prompt):] |
|
metadata: dict = {"image_path": path_image} |
|
|
|
return caption, metadata |
|
|