File size: 24,554 Bytes
3f7cfab
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
import ast
import json
import os, sys

import pytest

from client_test import get_client, run_client_chat, run_client, get_args, run_client_gen
from tests.utils import wrap_test_forked, make_user_path_test, get_llama
from utils import get_githash


@wrap_test_forked
def test_client1():
    os.environ['TEST_LANGCHAIN_IMPORT'] = "1"
    sys.modules.pop('gpt_langchain', None)
    sys.modules.pop('langchain', None)

    from generate import main
    main(base_model='h2oai/h2ogpt-oig-oasst1-512-6_9b', prompt_type='human_bot', chat=False,
         stream_output=False, gradio=True, num_beams=1, block_gradio_exit=False)

    from client_test import test_client_basic
    res_dict, _ = test_client_basic()
    assert res_dict['prompt'] == 'Who are you?'
    assert res_dict['iinput'] == ''
    assert 'I am h2oGPT' in res_dict['response'] or "I'm h2oGPT" in res_dict['response'] or 'I’m h2oGPT' in res_dict[
        'response']


@wrap_test_forked
def test_client1api():
    os.environ['TEST_LANGCHAIN_IMPORT'] = "1"
    sys.modules.pop('gpt_langchain', None)
    sys.modules.pop('langchain', None)

    from generate import main
    main(base_model='h2oai/h2ogpt-oig-oasst1-512-6_9b', prompt_type='human_bot', chat=False,
         stream_output=False, gradio=True, num_beams=1, block_gradio_exit=False)

    from client_test import test_client_basic_api
    res_dict, _ = test_client_basic_api()
    assert res_dict['prompt'] == 'Who are you?'
    assert res_dict['iinput'] == ''
    assert 'I am h2oGPT' in res_dict['response'] or "I'm h2oGPT" in res_dict['response'] or 'I’m h2oGPT' in res_dict[
        'response']


@pytest.mark.parametrize("admin_pass", ['', 'foodoo1234'])
@wrap_test_forked
def test_client1api_lean(admin_pass):
    from generate import main
    base_model = 'h2oai/h2ogpt-oig-oasst1-512-6_9b'
    os.environ['ADMIN_PASS'] = admin_pass
    inf_port = os.environ['GRADIO_SERVER_PORT'] = "9999"
    main(base_model=base_model, prompt_type='human_bot', chat=False,
         stream_output=False, gradio=True, num_beams=1, block_gradio_exit=False)

    os.environ['HOST'] = "http://127.0.0.1:%s" % inf_port

    client1 = get_client(serialize=True)

    from gradio_utils.grclient import GradioClient
    client2 = GradioClient(os.environ['HOST'])
    client2.refresh_client()  # test refresh

    for client in [client1, client2]:

        api_name = '/submit_nochat_api'  # NOTE: like submit_nochat but stable API for string dict passing
        prompt = 'Who are you?'
        kwargs = dict(instruction_nochat=prompt)
        # pass string of dict.  All entries are optional, but expect at least instruction_nochat to be filled
        res = client.predict(str(dict(kwargs)), api_name=api_name)

        print("Raw client result: %s" % res, flush=True)
        response = ast.literal_eval(res)['response']

        assert 'I am h2oGPT' in response or "I'm h2oGPT" in response or 'I’m h2oGPT' in response

        api_name = '/system_info_dict'
        # pass string of dict.  All entries are optional, but expect at least instruction_nochat to be filled
        ADMIN_PASS = os.getenv('ADMIN_PASS', admin_pass)
        res = client.predict(ADMIN_PASS, api_name=api_name)
        res = json.loads(res)
        assert isinstance(res, dict)
        assert res['base_model'] == base_model, "Problem with res=%s" % res
        assert 'device' in res
        assert res['hash'] == get_githash()

        api_name = '/system_hash'
        res = client.predict(api_name=api_name)
        assert res == get_githash()

        res = client.predict(api_name=api_name)
        assert res == get_githash()

    client2.refresh_client()  # test refresh
    res = client.predict(api_name=api_name)
    assert res == get_githash()

    res = client2.get_server_hash()
    assert res == get_githash()


@wrap_test_forked
def test_client1api_lean_chat_server():
    from generate import main
    main(base_model='h2oai/h2ogpt-oig-oasst1-512-6_9b', prompt_type='human_bot', chat=True,
         stream_output=True, gradio=True, num_beams=1, block_gradio_exit=False)

    api_name = '/submit_nochat_api'  # NOTE: like submit_nochat but stable API for string dict passing
    prompt = 'Who are you?'

    kwargs = dict(instruction_nochat=prompt)
    client = get_client(serialize=True)
    # pass string of dict.  All entries are optional, but expect at least instruction_nochat to be filled
    res = client.predict(str(dict(kwargs)), api_name=api_name)

    print("Raw client result: %s" % res, flush=True)
    response = ast.literal_eval(res)['response']

    assert 'I am h2oGPT' in response or "I'm h2oGPT" in response or 'I’m h2oGPT' in response


@wrap_test_forked
def test_client_chat_nostream():
    res_dict, client = run_client_chat_with_server(stream_output=False)
    assert 'I am h2oGPT' in res_dict['response'] or "I'm h2oGPT" in res_dict['response'] or 'I’m h2oGPT' in res_dict[
        'response']


@wrap_test_forked
def test_client_chat_nostream_gpt4all():
    res_dict, client = run_client_chat_with_server(stream_output=False, base_model='gptj', prompt_type='gptj')
    assert 'I am a computer program designed to assist' in res_dict['response'] or \
        'I am a person who enjoys' in res_dict['response'] or \
        'I am a student at' in res_dict['response'] or \
        'I am a person who' in res_dict['response']


@wrap_test_forked
def test_client_chat_nostream_gpt4all_llama():
    res_dict, client = run_client_chat_with_server(stream_output=False, base_model='gpt4all_llama', prompt_type='gptj')
    assert 'What do you want from me?' in res_dict['response'] or \
           'What do you want?' in res_dict['response'] or \
           'What is your name and title?' in res_dict['response'] or \
           'I can assist you with any information' in res_dict['response'] or \
           'I can provide information or assistance' in res_dict['response'] or \
           'am a student' in res_dict['response']


@pytest.mark.need_tokens
@wrap_test_forked
def test_client_chat_nostream_llama7b():
    prompt_type = get_llama()
    res_dict, client = run_client_chat_with_server(stream_output=False, base_model='llama', prompt_type=prompt_type)
    assert "am a virtual assistant" in res_dict['response'] or \
        'am a student' in res_dict['response']


def run_client_chat_with_server(prompt='Who are you?', stream_output=False, max_new_tokens=256,
                                base_model='h2oai/h2ogpt-oig-oasst1-512-6_9b', prompt_type='human_bot',
                                langchain_mode='Disabled', user_path=None,
                                visible_langchain_modes=['UserData', 'MyData'],
                                reverse_docs=True):
    if langchain_mode == 'Disabled':
        os.environ['TEST_LANGCHAIN_IMPORT'] = "1"
        sys.modules.pop('gpt_langchain', None)
        sys.modules.pop('langchain', None)

    from generate import main
    main(base_model=base_model, prompt_type=prompt_type, chat=True,
         stream_output=stream_output, gradio=True, num_beams=1, block_gradio_exit=False,
         max_new_tokens=max_new_tokens,
         langchain_mode=langchain_mode, user_path=user_path,
         visible_langchain_modes=visible_langchain_modes,
         reverse_docs=reverse_docs)

    from client_test import run_client_chat
    res_dict, client = run_client_chat(prompt=prompt, prompt_type=prompt_type, stream_output=stream_output,
                                       max_new_tokens=max_new_tokens, langchain_mode=langchain_mode)
    assert res_dict['prompt'] == prompt
    assert res_dict['iinput'] == ''
    return res_dict, client


@wrap_test_forked
def test_client_chat_stream():
    run_client_chat_with_server(stream_output=True)


def run_client_nochat_with_server(prompt='Who are you?', stream_output=False, max_new_tokens=256,
                                  base_model='h2oai/h2ogpt-oig-oasst1-512-6_9b', prompt_type='human_bot',
                                  langchain_mode='Disabled', user_path=None,
                                  visible_langchain_modes=['UserData', 'MyData'],
                                  reverse_docs=True):
    if langchain_mode == 'Disabled':
        os.environ['TEST_LANGCHAIN_IMPORT'] = "1"
        sys.modules.pop('gpt_langchain', None)
        sys.modules.pop('langchain', None)

    from generate import main
    main(base_model=base_model, prompt_type=prompt_type, chat=True,
         stream_output=stream_output, gradio=True, num_beams=1, block_gradio_exit=False,
         max_new_tokens=max_new_tokens,
         langchain_mode=langchain_mode, user_path=user_path,
         visible_langchain_modes=visible_langchain_modes,
         reverse_docs=reverse_docs)

    from client_test import run_client_nochat_gen
    res_dict, client = run_client_nochat_gen(prompt=prompt, prompt_type=prompt_type,
                                             stream_output=stream_output,
                                             max_new_tokens=max_new_tokens, langchain_mode=langchain_mode)
    assert 'Birds' in res_dict['response'] or \
           'and can learn new things' in res_dict['response'] or \
           'Once upon a time' in res_dict['response']
    return res_dict, client


@wrap_test_forked
def test_client_nochat_stream():
    run_client_nochat_with_server(stream_output=True, prompt="Tell a very long kid's story about birds.")


@wrap_test_forked
def test_client_chat_stream_langchain():
    user_path = make_user_path_test()
    prompt = "What is h2oGPT?"
    res_dict, client = run_client_chat_with_server(prompt=prompt, stream_output=True, langchain_mode="UserData",
                                                   user_path=user_path,
                                                   visible_langchain_modes=['UserData', 'MyData'],
                                                   reverse_docs=False,  # for 6_9 dumb model for testing
                                                   )
    # below wouldn't occur if didn't use LangChain with README.md,
    # raw LLM tends to ramble about H2O.ai and what it does regardless of question.
    # bad answer about h2o.ai is just becomes dumb model, why flipped context above,
    # but not stable over different systems
    assert 'h2oGPT is a large language model' in res_dict['response'] or \
           'H2O.ai is a technology company' in res_dict['response']


@pytest.mark.parametrize("max_new_tokens", [256, 2048])
@pytest.mark.parametrize("top_k_docs", [3, 100])
@wrap_test_forked
def test_client_chat_stream_langchain_steps(max_new_tokens, top_k_docs):
    os.environ['VERBOSE_PIPELINE'] = '1'
    user_path = make_user_path_test()

    stream_output = True
    base_model = 'h2oai/h2ogpt-oig-oasst1-512-6_9b'
    prompt_type = 'human_bot'
    langchain_mode = 'UserData'
    visible_langchain_modes = ['UserData', 'MyData']

    from generate import main
    main(base_model=base_model, prompt_type=prompt_type, chat=True,
         stream_output=stream_output, gradio=True, num_beams=1, block_gradio_exit=False,
         max_new_tokens=max_new_tokens,
         top_k_docs=top_k_docs,
         langchain_mode=langchain_mode, user_path=user_path,
         visible_langchain_modes=visible_langchain_modes,
         reverse_docs=False,  # for 6_9
         )

    from client_test import get_client, get_args, run_client
    client = get_client(serialize=False)

    # QUERY1
    prompt = "What is h2oGPT?"
    langchain_mode = 'UserData'
    kwargs, args = get_args(prompt, prompt_type, chat=True, stream_output=stream_output,
                            max_new_tokens=max_new_tokens,
                            top_k_docs=top_k_docs,
                            langchain_mode=langchain_mode)

    res_dict, client = run_client(client, prompt, args, kwargs)
    assert ('a large language model' in res_dict['response'] or
            'language model trained' in res_dict['response'] or
            'H2O GPT is a language model' in res_dict['response'] or
            'H2O GPT is a chatbot framework' in res_dict['response'] or
            'H2O GPT is a chatbot that can be trained' in res_dict['response'] or
            'A large language model (LLM)' in res_dict['response'] or
            'GPT-based language model' in res_dict['response'] or
            'H2O.ai is a technology company' in res_dict['response']
            ) \
           and ('FAQ.md' in res_dict['response'] or 'README.md' in res_dict['response'])

    # QUERY1
    prompt = "What is Whisper?"
    langchain_mode = 'UserData'
    kwargs, args = get_args(prompt, prompt_type, chat=True, stream_output=stream_output,
                            max_new_tokens=max_new_tokens,
                            top_k_docs=top_k_docs,
                            langchain_mode=langchain_mode)

    res_dict, client = run_client(client, prompt, args, kwargs)
    # wrong answer given wrong docs
    assert ('A secure chatbot that uses a large language' in res_dict['response'] or
            'Whisper is a chatbot' in res_dict['response'] or
            'Whisper is a privacy-focused chatbot platform' in res_dict['response'] or
            'h2oGPT' in res_dict['response'] or
            'A secure, private, and anonymous chat platform' in res_dict['response'] or
            'Whisper is a privacy-preserving' in res_dict['response'] or
            'A chatbot that uses a large language model' in res_dict['response'] or
            'This is a config file for Whisper' in res_dict['response'] or
            'Whisper is a secure messaging app' in res_dict['response'] or
            'secure, private, and anonymous chatbot' in res_dict['response'] or
            'Whisper is a secure, anonymous, and encrypted' in res_dict['response']
            ) \
           and ('FAQ.md' in res_dict['response'] or 'README.md' in res_dict['response'])

    # QUERY2
    prompt = "What is h2oGPT?"
    langchain_mode = 'ChatLLM'
    kwargs, args = get_args(prompt, prompt_type, chat=True, stream_output=stream_output,
                            max_new_tokens=max_new_tokens,
                            top_k_docs=top_k_docs,
                            langchain_mode=langchain_mode)

    res_dict, client = run_client(client, prompt, args, kwargs)
    # i.e. answers wrongly without data, dumb model, but also no docs at all since cutoff entirely
    assert 'H2O.ai is a technology company' in res_dict['response'] and '.md' not in res_dict['response']

    # QUERY3
    prompt = "What is whisper?"
    langchain_mode = 'UserData'
    kwargs, args = get_args(prompt, prompt_type, chat=True, stream_output=stream_output,
                            max_new_tokens=max_new_tokens,
                            top_k_docs=top_k_docs,
                            langchain_mode=langchain_mode)

    res_dict, client = run_client(client, prompt, args, kwargs)
    # odd answer since no whisper docs, but still shows some docs at very low score
    assert ('h2oGPT' in res_dict['response'] or
            'A chatbot that can whisper to you' in res_dict['response'] or
            'whisper is a simple' in res_dict['response'] or
            'Whisper is a tool for generating text from a model' in res_dict['response'] or
            'Whisper is a chatbot platform' in res_dict['response'] or
            'whisper is a chatbot framework' in res_dict['response'] or
            'whisper is a tool for training language models' in res_dict['response'] or
            'whisper is a secure messaging app' in res_dict['response'] or
            'LLaMa-based models are not commercially viable' in res_dict['response'] or
            'A text-based chatbot that' in res_dict['response'] or
            'A secure, private, and anonymous chat service' in res_dict['response'] or
            'LLaMa is a language' in res_dict['response'] or
            'chatbot that can' in res_dict['response'] or
            'A secure, private, and anonymous chatbot' in res_dict['response'] or
            'A secure, encrypted chat service that allows' in res_dict['response']
            ) \
           and '.md' in res_dict['response']


@pytest.mark.need_tokens
@pytest.mark.parametrize("max_new_tokens", [256, 2048])
@pytest.mark.parametrize("top_k_docs", [3, 100])
@wrap_test_forked
def test_client_chat_stream_langchain_steps2(max_new_tokens, top_k_docs):
    os.environ['VERBOSE_PIPELINE'] = '1'
    # full user data
    from make_db import make_db_main
    make_db_main(download_some=True)
    user_path = None  # shouldn't be necessary, db already made

    stream_output = True
    max_new_tokens = 256
    base_model = 'h2oai/h2ogpt-oig-oasst1-512-6_9b'
    prompt_type = 'human_bot'
    langchain_mode = 'UserData'
    visible_langchain_modes = ['UserData', 'MyData', 'github h2oGPT']

    from generate import main
    main(base_model=base_model, prompt_type=prompt_type, chat=True,
         stream_output=stream_output, gradio=True, num_beams=1, block_gradio_exit=False,
         max_new_tokens=max_new_tokens,
         langchain_mode=langchain_mode, user_path=user_path,
         visible_langchain_modes=visible_langchain_modes,
         verbose=True)

    from client_test import get_client, get_args, run_client
    client = get_client(serialize=False)

    # QUERY1
    prompt = "Who are you?"
    langchain_mode = 'ChatLLM'
    kwargs, args = get_args(prompt, prompt_type, chat=True, stream_output=stream_output,
                            max_new_tokens=max_new_tokens, langchain_mode=langchain_mode)

    res_dict, client = run_client(client, prompt, args, kwargs)
    assert 'a large language model' in res_dict['response'] and 'FAQ.md' not in res_dict['response']

    # QUERY2
    prompt = "What is whisper?"
    langchain_mode = 'UserData'
    kwargs, args = get_args(prompt, prompt_type, chat=True, stream_output=stream_output,
                            max_new_tokens=max_new_tokens, langchain_mode=langchain_mode)

    res_dict, client = run_client(client, prompt, args, kwargs)
    assert 'large-scale speech recognition model' in res_dict['response'] and 'whisper.pdf' in res_dict['response']

    # QUERY3
    prompt = "What is h2oGPT"
    langchain_mode = 'github h2oGPT'
    kwargs, args = get_args(prompt, prompt_type, chat=True, stream_output=stream_output,
                            max_new_tokens=max_new_tokens, langchain_mode=langchain_mode)

    res_dict, client = run_client(client, prompt, args, kwargs)
    assert ('h2oGPT is an open-source, fully permissive, commercially usable, and fully trained language model' in
            res_dict['response'] or
            'A new open-source language model that is fully permissive' in res_dict['response'] or
            'h2oGPT is an open-source language model' in res_dict['response'] or
            'h2oGPT is an open-source, fully permissive, commercially usable' in res_dict['response']
            ) and \
           'README.md' in res_dict['response']


@wrap_test_forked
def test_client_chat_stream_long():
    prompt = 'Tell a very long story about cute birds for kids.'
    res_dict, client = run_client_chat_with_server(prompt=prompt, stream_output=True, max_new_tokens=1024)
    assert 'Once upon a time' in res_dict['response']


@pytest.mark.skip(reason="Local file required")
@wrap_test_forked
def test_client_long():
    os.environ['TEST_LANGCHAIN_IMPORT'] = "1"
    sys.modules.pop('gpt_langchain', None)
    sys.modules.pop('langchain', None)

    from generate import main
    main(base_model='mosaicml/mpt-7b-storywriter', prompt_type='plain', chat=False,
         stream_output=False, gradio=True, num_beams=1, block_gradio_exit=False)

    with open("/home/jon/Downloads/Gatsby_PDF_FullText.txt") as f:
        prompt = f.readlines()

    from client_test import run_client_nochat
    res_dict, _ = run_client_nochat(prompt=prompt, prompt_type='plain', max_new_tokens=86000)
    print(res_dict['response'])


@wrap_test_forked
def test_fast_up():
    from generate import main
    main(gradio=True, block_gradio_exit=False)


@pytest.mark.skipif(not os.getenv('STRESS'), reason="Only for stress testing already-running server")
@pytest.mark.parametrize("repeat", list(range(0, 100)))
@wrap_test_forked
def test_client_stress(repeat):
    # pip install pytest-repeat  # license issues, don't put with requirements
    # pip install pytest-timeout  # license issues, don't put with requirements
    #
    # CUDA_VISIBLE_DEVICES=0 SCORE_MODEL=None python generate.py --base_model=h2oai/h2ogpt-gm-oasst1-en-2048-falcon-7b-v2 --langchain_mode=UserData --user_path=user_path --debug=True --concurrency_count=8
    #
    # timeout to mimic client disconnecting and generation still going, else too clean and doesn't fail STRESS=1
    # pytest -s -v -n 8 --timeout=30 tests/test_client_calls.py::test_client_stress 2> stress1.log
    # HOST=http://192.168.1.46:9999 STRESS=1 pytest -s -v -n 8 --timeout=1000 tests/test_client_calls.py::test_client_stress 2> stress1.log

    prompt = "Tell a very long kid's story about birds."
    #prompt = "Say exactly only one word."

    client = get_client(serialize=True)
    kwargs = dict(
        instruction='',
        max_new_tokens=200,
        min_new_tokens=1,
        max_time=300,
        do_sample=False,
        instruction_nochat=prompt,
    )

    api_name = '/submit_nochat_api'  # NOTE: like submit_nochat but stable API for string dict passing
    res = client.predict(
        str(dict(kwargs)),
        api_name=api_name,
    )
    print("Raw client result: %s" % res, flush=True)
    assert isinstance(res, str)
    res_dict = ast.literal_eval(res)
    assert 'response' in res_dict and res_dict['response']


@pytest.mark.skipif(not os.getenv('STRESS'), reason="Only for stress testing already-running server")
@pytest.mark.parametrize("repeat", list(range(0, 100)))
@wrap_test_forked
def test_client_stress_stream(repeat):
    prompt = "Tell a very long kid's story about birds."
    max_new_tokens = 200
    prompt_type = None
    langchain_mode = 'Disabled'
    stream_output = True
    chat = False

    client = get_client(serialize=True)
    kwargs, args = get_args(prompt, prompt_type, chat=chat, stream_output=stream_output,
                            max_new_tokens=max_new_tokens, langchain_mode=langchain_mode)
    res_dict, client = run_client_gen(client, prompt, args, kwargs, do_md_to_text=False, verbose=False)

    assert 'response' in res_dict and res_dict['response']


@pytest.mark.skipif(not os.getenv('SERVER'),
                    reason="For testing text-generatino-inference server")
@wrap_test_forked
def test_text_generation_inference_server1():
    """
    e.g.
    SERVER on 192.168.1.46
    (alpaca) jon@gpu:/data/jon/h2o-llm$ CUDA_VISIBLE_DEVICES=0,1 docker run --gpus all --shm-size 2g -e NCCL_SHM_DISABLE=1 -e TRANSFORMERS_CACHE="/.cache/" -p 6112:80 -v $HOME/.cache:/.cache/ -v $HOME/.cache/huggingface/hub/:/data  ghcr.io/huggingface/text-generation-inference:0.8.2 --model-id h2oai/h2ogpt-oasst1-512-12b --max-input-length 2048 --max-total-tokens 4096 --sharded=true --num-shard=2 --disable-custom-kernels --quantize bitsandbytes --trust-remote-code --max-stop-sequences=6

    CLIENT on separate system
    HOST=http://192.168.1.46:6112 SERVER=1 pytest -s -v tests/test_client_calls.py::test_text_generation_inference_server1

    :return:
    """

    # Python client test:
    from text_generation import Client

    host = os.getenv("HOST", "http://127.0.0.1:6112")
    client = Client(host)
    print(client.generate("What is Deep Learning?", max_new_tokens=17).generated_text)

    text = ""
    for response in client.generate_stream("What is Deep Learning?", max_new_tokens=17):
        if not response.token.special:
            text += response.token.text
    assert 'Deep learning is a subfield of machine learning' in text

    # Curl Test (not really pass fail yet)
    import subprocess
    output = subprocess.run(['curl', '%s/generate' % host, '-X', 'POST', '-d',
                             '{"inputs":"<|prompt|>What is Deep Learning?<|endoftext|><|answer|>","parameters":{"max_new_tokens": 20, "truncate": 1024, "do_sample": false, "temperature": 0.1, "repetition_penalty": 1.2}}',
                             '-H', 'Content-Type: application/json',
                             '--user', 'user:bhx5xmu6UVX4'],
                            check=True, capture_output=True).stdout.decode()
    text = ast.literal_eval(output)['generated_text']
    assert 'Deep learning is a subfield of machine learning' in text or \
           'Deep learning refers to a class of machine learning' in text