File size: 12,590 Bytes
3f7cfab |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 |
"""Load Data from a MediaWiki dump xml."""
import ast
import glob
import pickle
import uuid
from typing import List, Optional
import os
import bz2
import csv
import numpy as np
import pandas as pd
import pytest
from matplotlib import pyplot as plt
from langchain.docstore.document import Document
from langchain.document_loaders import MWDumpLoader
# path where downloaded wiki files exist, to be processed
root_path = "/data/jon/h2o-llm"
def unescape(x):
try:
x = ast.literal_eval(x)
except:
try:
x = x.encode('ascii', 'ignore').decode('unicode_escape')
except:
pass
return x
def get_views():
# views = pd.read_csv('wiki_page_views_more_1000month.csv')
views = pd.read_csv('wiki_page_views_more_5000month.csv')
views.index = views['title']
views = views['views']
views = views.to_dict()
views = {str(unescape(str(k))): v for k, v in views.items()}
views2 = {k.replace('_', ' '): v for k, v in views.items()}
# views has _ but pages has " "
views.update(views2)
return views
class MWDumpDirectLoader(MWDumpLoader):
def __init__(self, data: str, encoding: Optional[str] = "utf8",
title_words_limit=None, use_views=True, verbose=True):
"""Initialize with file path."""
self.data = data
self.encoding = encoding
self.title_words_limit = title_words_limit
self.verbose = verbose
if use_views:
# self.views = get_views()
# faster to use global shared values
self.views = global_views
else:
self.views = None
def load(self) -> List[Document]:
"""Load from file path."""
import mwparserfromhell
import mwxml
dump = mwxml.Dump.from_page_xml(self.data)
docs = []
for page in dump.pages:
if self.views is not None and page.title not in self.views:
if self.verbose:
print("Skipped %s low views" % page.title, flush=True)
continue
for revision in page:
if self.title_words_limit is not None:
num_words = len(' '.join(page.title.split('_')).split(' '))
if num_words > self.title_words_limit:
if self.verbose:
print("Skipped %s" % page.title, flush=True)
continue
if self.verbose:
if self.views is not None:
print("Kept %s views: %s" % (page.title, self.views[page.title]), flush=True)
else:
print("Kept %s" % page.title, flush=True)
code = mwparserfromhell.parse(revision.text)
text = code.strip_code(
normalize=True, collapse=True, keep_template_params=False
)
title_url = str(page.title).replace(' ', '_')
metadata = dict(title=page.title,
source="https://en.wikipedia.org/wiki/" + title_url,
id=page.id,
redirect=page.redirect,
views=self.views[page.title] if self.views is not None else -1,
)
metadata = {k: v for k, v in metadata.items() if v is not None}
docs.append(Document(page_content=text, metadata=metadata))
return docs
def search_index(search_term, index_filename):
byte_flag = False
data_length = start_byte = 0
index_file = open(index_filename, 'r')
csv_reader = csv.reader(index_file, delimiter=':')
for line in csv_reader:
if not byte_flag and search_term == line[2]:
start_byte = int(line[0])
byte_flag = True
elif byte_flag and int(line[0]) != start_byte:
data_length = int(line[0]) - start_byte
break
index_file.close()
return start_byte, data_length
def get_start_bytes(index_filename):
index_file = open(index_filename, 'r')
csv_reader = csv.reader(index_file, delimiter=':')
start_bytes = set()
for line in csv_reader:
start_bytes.add(int(line[0]))
index_file.close()
return sorted(start_bytes)
def get_wiki_filenames():
# requires
# wget http://ftp.acc.umu.se/mirror/wikimedia.org/dumps/enwiki/20230401/enwiki-20230401-pages-articles-multistream-index.txt.bz2
base_path = os.path.join(root_path, 'enwiki-20230401-pages-articles-multistream')
index_file = 'enwiki-20230401-pages-articles-multistream-index.txt'
index_filename = os.path.join(base_path, index_file)
wiki_filename = os.path.join(base_path, 'enwiki-20230401-pages-articles-multistream.xml.bz2')
return index_filename, wiki_filename
def get_documents_by_search_term(search_term):
index_filename, wiki_filename = get_wiki_filenames()
start_byte, data_length = search_index(search_term, index_filename)
with open(wiki_filename, 'rb') as wiki_file:
wiki_file.seek(start_byte)
data = bz2.BZ2Decompressor().decompress(wiki_file.read(data_length))
loader = MWDumpDirectLoader(data.decode())
documents = loader.load()
return documents
def get_one_chunk(wiki_filename, start_byte, end_byte, return_file=True,
title_words_limit=None,
use_views=True):
data_length = end_byte - start_byte
with open(wiki_filename, 'rb') as wiki_file:
wiki_file.seek(start_byte)
data = bz2.BZ2Decompressor().decompress(wiki_file.read(data_length))
loader = MWDumpDirectLoader(data.decode(), title_words_limit=title_words_limit,
use_views=use_views)
documents1 = loader.load()
if return_file:
base_tmp = "temp_wiki"
if not os.path.isdir(base_tmp):
os.makedirs(base_tmp, exist_ok=True)
filename = os.path.join(base_tmp, str(uuid.uuid4()) + ".tmp.pickle")
with open(filename, 'wb') as f:
pickle.dump(documents1, f)
return filename
return documents1
from joblib import Parallel, delayed
global_views = get_views()
def get_all_documents(small_test=2, n_jobs=None, use_views=True):
print("DO get all wiki docs: %s" % small_test, flush=True)
index_filename, wiki_filename = get_wiki_filenames()
start_bytes = get_start_bytes(index_filename)
end_bytes = start_bytes[1:]
start_bytes = start_bytes[:-1]
if small_test:
start_bytes = start_bytes[:small_test]
end_bytes = end_bytes[:small_test]
if n_jobs is None:
n_jobs = 5
else:
if n_jobs is None:
n_jobs = os.cpu_count() // 4
# default loky backend leads to name space conflict problems
return_file = True # large return from joblib hangs
documents = Parallel(n_jobs=n_jobs, verbose=10, backend='multiprocessing')(
delayed(get_one_chunk)(wiki_filename, start_byte, end_byte,
return_file=return_file, use_views=use_views) for start_byte, end_byte in
zip(start_bytes, end_bytes))
if return_file:
# then documents really are files
files = documents.copy()
documents = []
for fil in files:
with open(fil, 'rb') as f:
documents.extend(pickle.load(f))
os.remove(fil)
else:
from functools import reduce
from operator import concat
documents = reduce(concat, documents)
assert isinstance(documents, list)
print("DONE get all wiki docs", flush=True)
return documents
def test_by_search_term():
search_term = 'Apollo'
assert len(get_documents_by_search_term(search_term)) == 100
search_term = 'Abstract (law)'
assert len(get_documents_by_search_term(search_term)) == 100
search_term = 'Artificial languages'
assert len(get_documents_by_search_term(search_term)) == 100
def test_start_bytes():
index_filename, wiki_filename = get_wiki_filenames()
assert len(get_start_bytes(index_filename)) == 227850
def test_get_all_documents():
small_test = 20 # 227850
n_jobs = os.cpu_count() // 4
assert len(get_all_documents(small_test=small_test, n_jobs=n_jobs, use_views=False)) == small_test * 100
assert len(get_all_documents(small_test=small_test, n_jobs=n_jobs, use_views=True)) == 429
def get_one_pageviews(fil):
df1 = pd.read_csv(fil, sep=' ', header=None, names=['region', 'title', 'views', 'foo'], quoting=csv.QUOTE_NONE)
df1.index = df1['title']
df1 = df1[df1['region'] == 'en']
df1 = df1.drop('region', axis=1)
df1 = df1.drop('foo', axis=1)
df1 = df1.drop('title', axis=1) # already index
base_tmp = "temp_wiki_pageviews"
if not os.path.isdir(base_tmp):
os.makedirs(base_tmp, exist_ok=True)
filename = os.path.join(base_tmp, str(uuid.uuid4()) + ".tmp.csv")
df1.to_csv(filename, index=True)
return filename
def test_agg_pageviews(gen_files=False):
if gen_files:
path = os.path.join(root_path, 'wiki_pageviews/dumps.wikimedia.org/other/pageviews/2023/2023-04')
files = glob.glob(os.path.join(path, 'pageviews*.gz'))
# files = files[:2] # test
n_jobs = os.cpu_count() // 2
csv_files = Parallel(n_jobs=n_jobs, verbose=10, backend='multiprocessing')(
delayed(get_one_pageviews)(fil) for fil in files)
else:
# to continue without redoing above
csv_files = glob.glob(os.path.join(root_path, 'temp_wiki_pageviews/*.csv'))
df_list = []
for csv_file in csv_files:
print(csv_file)
df1 = pd.read_csv(csv_file)
df_list.append(df1)
df = pd.concat(df_list, axis=0)
df = df.groupby('title')['views'].sum().reset_index()
df.to_csv("wiki_page_views.csv", index=True)
def test_reduce_pageview():
filename = "wiki_page_views.csv"
df = pd.read_csv(filename)
df = df[df['views'] < 1e7]
#
plt.hist(df['views'], bins=100, log=True)
views_avg = np.mean(df['views'])
views_median = np.median(df['views'])
plt.title("Views avg: %s median: %s" % (views_avg, views_median))
plt.savefig(filename.replace('.csv', '.png'))
plt.close()
#
views_limit = 5000
df = df[df['views'] > views_limit]
filename = "wiki_page_views_more_5000month.csv"
df.to_csv(filename, index=True)
#
plt.hist(df['views'], bins=100, log=True)
views_avg = np.mean(df['views'])
views_median = np.median(df['views'])
plt.title("Views avg: %s median: %s" % (views_avg, views_median))
plt.savefig(filename.replace('.csv', '.png'))
plt.close()
@pytest.mark.skip("Only if doing full processing again, some manual steps")
def test_do_wiki_full_all():
# Install other requirements for wiki specific conversion:
# pip install -r reqs_optional/requirements_optional_wikiprocessing.txt
# Use "Transmission" in Ubuntu to get wiki dump using torrent:
# See: https://meta.wikimedia.org/wiki/Data_dump_torrents
# E.g. magnet:?xt=urn:btih:b2c74af2b1531d0b63f1166d2011116f44a8fed0&dn=enwiki-20230401-pages-articles-multistream.xml.bz2&tr=udp%3A%2F%2Ftracker.opentrackr.org%3A1337
# Get index
os.system("wget http://ftp.acc.umu.se/mirror/wikimedia.org/dumps/enwiki/20230401/enwiki-20230401-pages-articles-multistream-index.txt.bz2")
# Test that can use LangChain to get docs from subset of wiki as sampled out of full wiki directly using bzip multistream
test_get_all_documents()
# Check can search wiki multistream
test_by_search_term()
# Test can get all start bytes in index
test_start_bytes()
# Get page views, e.g. for entire month of April 2023
os.system("wget -b -m -k -o wget.log -e robots=off https://dumps.wikimedia.org/other/pageviews/2023/2023-04/")
# Aggregate page views from many files into single file
test_agg_pageviews(gen_files=True)
# Reduce page views to some limit, so processing of full wiki is not too large
test_reduce_pageview()
# Start generate.py with requesting wiki_full in prep. This will use page views as referenced in get_views.
# Note get_views as global() function done once is required to avoid very slow processing
# WARNING: Requires alot of memory to handle, used up to 300GB system RAM at peak
"""
python generate.py --langchain_mode='wiki_full' --visible_langchain_modes="['wiki_full', 'UserData', 'MyData', 'github h2oGPT', 'DriverlessAI docs']" &> lc_out.log
"""
|