File size: 12,977 Bytes
3f7cfab |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 |
"""
Client test.
Run server:
python generate.py --base_model=h2oai/h2ogpt-oig-oasst1-512-6_9b
NOTE: For private models, add --use-auth_token=True
NOTE: --infer_devices=True (default) must be used for multi-GPU in case see failures with cuda:x cuda:y mismatches.
Currently, this will force model to be on a single GPU.
Then run this client as:
python client_test.py
For HF spaces:
HOST="https://h2oai-h2ogpt-chatbot.hf.space" python client_test.py
Result:
Loaded as API: https://h2oai-h2ogpt-chatbot.hf.space ✔
{'instruction_nochat': 'Who are you?', 'iinput_nochat': '', 'response': 'I am h2oGPT, a large language model developed by LAION.', 'sources': ''}
For demo:
HOST="https://gpt.h2o.ai" python client_test.py
Result:
Loaded as API: https://gpt.h2o.ai ✔
{'instruction_nochat': 'Who are you?', 'iinput_nochat': '', 'response': 'I am h2oGPT, a chatbot created by LAION.', 'sources': ''}
NOTE: Raw output from API for nochat case is a string of a python dict and will remain so if other entries are added to dict:
{'response': "I'm h2oGPT, a large language model by H2O.ai, the visionary leader in democratizing AI.", 'sources': ''}
"""
import ast
import time
import os
import markdown # pip install markdown
import pytest
from bs4 import BeautifulSoup # pip install beautifulsoup4
from enums import DocumentChoices
debug = False
os.environ['HF_HUB_DISABLE_TELEMETRY'] = '1'
def get_client(serialize=True):
from gradio_client import Client
client = Client(os.getenv('HOST', "http://localhost:7860"), serialize=serialize)
if debug:
print(client.view_api(all_endpoints=True))
return client
def get_args(prompt, prompt_type, chat=False, stream_output=False,
max_new_tokens=50,
top_k_docs=3,
langchain_mode='Disabled', prompt_dict=''):
from collections import OrderedDict
kwargs = OrderedDict(instruction=prompt if chat else '', # only for chat=True
iinput='', # only for chat=True
context='',
# streaming output is supported, loops over and outputs each generation in streaming mode
# but leave stream_output=False for simple input/output mode
stream_output=stream_output,
prompt_type=prompt_type,
prompt_dict=prompt_dict,
temperature=0.1,
top_p=0.75,
top_k=40,
num_beams=1,
max_new_tokens=max_new_tokens,
min_new_tokens=0,
early_stopping=False,
max_time=20,
repetition_penalty=1.0,
num_return_sequences=1,
do_sample=True,
chat=chat,
instruction_nochat=prompt if not chat else '',
iinput_nochat='', # only for chat=False
langchain_mode=langchain_mode,
top_k_docs=top_k_docs,
chunk=True,
chunk_size=512,
document_choice=[DocumentChoices.All_Relevant.name],
)
from generate import eval_func_param_names
assert len(set(eval_func_param_names).difference(set(list(kwargs.keys())))) == 0
if chat:
# add chatbot output on end. Assumes serialize=False
kwargs.update(dict(chatbot=[]))
return kwargs, list(kwargs.values())
@pytest.mark.skip(reason="For manual use against some server, no server launched")
def test_client_basic(prompt_type='human_bot'):
return run_client_nochat(prompt='Who are you?', prompt_type=prompt_type, max_new_tokens=50)
def run_client_nochat(prompt, prompt_type, max_new_tokens):
kwargs, args = get_args(prompt, prompt_type, chat=False, max_new_tokens=max_new_tokens)
api_name = '/submit_nochat'
client = get_client(serialize=True)
res = client.predict(
*tuple(args),
api_name=api_name,
)
print("Raw client result: %s" % res, flush=True)
res_dict = dict(prompt=kwargs['instruction_nochat'], iinput=kwargs['iinput_nochat'],
response=md_to_text(res))
print(res_dict)
return res_dict, client
@pytest.mark.skip(reason="For manual use against some server, no server launched")
def test_client_basic_api(prompt_type='human_bot'):
return run_client_nochat_api(prompt='Who are you?', prompt_type=prompt_type, max_new_tokens=50)
def run_client_nochat_api(prompt, prompt_type, max_new_tokens):
kwargs, args = get_args(prompt, prompt_type, chat=False, max_new_tokens=max_new_tokens)
api_name = '/submit_nochat_api' # NOTE: like submit_nochat but stable API for string dict passing
client = get_client(serialize=True)
res = client.predict(
str(dict(kwargs)),
api_name=api_name,
)
print("Raw client result: %s" % res, flush=True)
res_dict = dict(prompt=kwargs['instruction_nochat'], iinput=kwargs['iinput_nochat'],
response=md_to_text(ast.literal_eval(res)['response']),
sources=ast.literal_eval(res)['sources'])
print(res_dict)
return res_dict, client
@pytest.mark.skip(reason="For manual use against some server, no server launched")
def test_client_basic_api_lean(prompt_type='human_bot'):
return run_client_nochat_api_lean(prompt='Who are you?', prompt_type=prompt_type, max_new_tokens=50)
def run_client_nochat_api_lean(prompt, prompt_type, max_new_tokens):
kwargs = dict(instruction_nochat=prompt)
api_name = '/submit_nochat_api' # NOTE: like submit_nochat but stable API for string dict passing
client = get_client(serialize=True)
res = client.predict(
str(dict(kwargs)),
api_name=api_name,
)
print("Raw client result: %s" % res, flush=True)
res_dict = dict(prompt=kwargs['instruction_nochat'],
response=md_to_text(ast.literal_eval(res)['response']),
sources=ast.literal_eval(res)['sources'])
print(res_dict)
return res_dict, client
@pytest.mark.skip(reason="For manual use against some server, no server launched")
def test_client_basic_api_lean_morestuff(prompt_type='human_bot'):
return run_client_nochat_api_lean_morestuff(prompt='Who are you?', prompt_type=prompt_type, max_new_tokens=50)
def run_client_nochat_api_lean_morestuff(prompt, prompt_type='human_bot', max_new_tokens=512):
kwargs = dict(
instruction='',
iinput='',
context='',
stream_output=False,
prompt_type=prompt_type,
temperature=0.1,
top_p=0.75,
top_k=40,
num_beams=1,
max_new_tokens=256,
min_new_tokens=0,
early_stopping=False,
max_time=20,
repetition_penalty=1.0,
num_return_sequences=1,
do_sample=True,
chat=False,
instruction_nochat=prompt,
iinput_nochat='',
langchain_mode='Disabled',
top_k_docs=4,
document_choice=['All'],
)
api_name = '/submit_nochat_api' # NOTE: like submit_nochat but stable API for string dict passing
client = get_client(serialize=True)
res = client.predict(
str(dict(kwargs)),
api_name=api_name,
)
print("Raw client result: %s" % res, flush=True)
res_dict = dict(prompt=kwargs['instruction_nochat'],
response=md_to_text(ast.literal_eval(res)['response']),
sources=ast.literal_eval(res)['sources'])
print(res_dict)
return res_dict, client
@pytest.mark.skip(reason="For manual use against some server, no server launched")
def test_client_chat(prompt_type='human_bot'):
return run_client_chat(prompt='Who are you?', prompt_type=prompt_type, stream_output=False, max_new_tokens=50,
langchain_mode='Disabled')
@pytest.mark.skip(reason="For manual use against some server, no server launched")
def test_client_chat_stream(prompt_type='human_bot'):
return run_client_chat(prompt="Tell a very long kid's story about birds.", prompt_type=prompt_type,
stream_output=True, max_new_tokens=512,
langchain_mode='Disabled')
def run_client_chat(prompt, prompt_type, stream_output, max_new_tokens, langchain_mode, prompt_dict=None):
client = get_client(serialize=False)
kwargs, args = get_args(prompt, prompt_type, chat=True, stream_output=stream_output,
max_new_tokens=max_new_tokens, langchain_mode=langchain_mode,
prompt_dict=prompt_dict)
return run_client(client, prompt, args, kwargs)
def run_client(client, prompt, args, kwargs, do_md_to_text=True, verbose=False):
assert kwargs['chat'], "Chat mode only"
res = client.predict(*tuple(args), api_name='/instruction')
args[-1] += [res[-1]]
res_dict = kwargs
res_dict['prompt'] = prompt
if not kwargs['stream_output']:
res = client.predict(*tuple(args), api_name='/instruction_bot')
res_dict['response'] = res[0][-1][1]
print(md_to_text(res_dict['response'], do_md_to_text=do_md_to_text))
return res_dict, client
else:
job = client.submit(*tuple(args), api_name='/instruction_bot')
res1 = ''
while not job.done():
outputs_list = job.communicator.job.outputs
if outputs_list:
res = job.communicator.job.outputs[-1]
res1 = res[0][-1][-1]
res1 = md_to_text(res1, do_md_to_text=do_md_to_text)
print(res1)
time.sleep(0.1)
full_outputs = job.outputs()
if verbose:
print('job.outputs: %s' % str(full_outputs))
# ensure get ending to avoid race
# -1 means last response if streaming
# 0 means get text_output, ignore exception_text
# 0 means get list within text_output that looks like [[prompt], [answer]]
# 1 means get bot answer, so will have last bot answer
res_dict['response'] = md_to_text(full_outputs[-1][0][0][1], do_md_to_text=do_md_to_text)
return res_dict, client
@pytest.mark.skip(reason="For manual use against some server, no server launched")
def test_client_nochat_stream(prompt_type='human_bot'):
return run_client_nochat_gen(prompt="Tell a very long kid's story about birds.", prompt_type=prompt_type,
stream_output=True, max_new_tokens=512,
langchain_mode='Disabled')
def run_client_nochat_gen(prompt, prompt_type, stream_output, max_new_tokens, langchain_mode):
client = get_client(serialize=False)
kwargs, args = get_args(prompt, prompt_type, chat=False, stream_output=stream_output,
max_new_tokens=max_new_tokens, langchain_mode=langchain_mode)
return run_client_gen(client, prompt, args, kwargs)
def run_client_gen(client, prompt, args, kwargs, do_md_to_text=True, verbose=False):
res_dict = kwargs
res_dict['prompt'] = prompt
if not kwargs['stream_output']:
res = client.predict(str(dict(kwargs)), api_name='/submit_nochat_api')
res_dict['response'] = res[0]
print(md_to_text(res_dict['response'], do_md_to_text=do_md_to_text))
return res_dict, client
else:
job = client.submit(str(dict(kwargs)), api_name='/submit_nochat_api')
while not job.done():
outputs_list = job.communicator.job.outputs
if outputs_list:
res = job.communicator.job.outputs[-1]
res_dict = ast.literal_eval(res)
print('Stream: %s' % res_dict['response'])
time.sleep(0.1)
res_list = job.outputs()
assert len(res_list) > 0, "No response, check server"
res = res_list[-1]
res_dict = ast.literal_eval(res)
print('Final: %s' % res_dict['response'])
return res_dict, client
def md_to_text(md, do_md_to_text=True):
if not do_md_to_text:
return md
assert md is not None, "Markdown is None"
html = markdown.markdown(md)
soup = BeautifulSoup(html, features='html.parser')
return soup.get_text()
def run_client_many(prompt_type='human_bot'):
ret1, _ = test_client_chat(prompt_type=prompt_type)
ret2, _ = test_client_chat_stream(prompt_type=prompt_type)
ret3, _ = test_client_nochat_stream(prompt_type=prompt_type)
ret4, _ = test_client_basic(prompt_type=prompt_type)
ret5, _ = test_client_basic_api(prompt_type=prompt_type)
ret6, _ = test_client_basic_api_lean(prompt_type=prompt_type)
ret7, _ = test_client_basic_api_lean_morestuff(prompt_type=prompt_type)
return ret1, ret2, ret3, ret4, ret5, ret6, ret7
if __name__ == '__main__':
run_client_many()
|