Spaces:
Sleeping
Sleeping
import gradio as gr | |
import pandas as pd | |
import requests | |
import json | |
import tiktoken | |
import matplotlib.pyplot as plt | |
# Constants | |
USD_TO_INR = 84 | |
PRICES_URL = "https://raw.githubusercontent.com/BerriAI/litellm/main/model_prices_and_context_window.json" | |
# Fetch and process token costs | |
try: | |
response = requests.get(PRICES_URL) | |
if response.status_code == 200: | |
TOKEN_COSTS = response.json() | |
else: | |
raise Exception(f"Failed to fetch token costs, status code: {response.status_code}") | |
except Exception as e: | |
print(f'Failed to update token costs with error: {e}. Using static costs.') | |
with open("model_prices.json", "r") as f: | |
TOKEN_COSTS = json.load(f) | |
TOKEN_COSTS = pd.DataFrame.from_dict(TOKEN_COSTS, orient='index').reset_index() | |
TOKEN_COSTS.columns = ['model'] + list(TOKEN_COSTS.columns[1:]) | |
TOKEN_COSTS = TOKEN_COSTS.loc[ | |
(~TOKEN_COSTS["model"].str.contains("sample_spec")) | |
& (~TOKEN_COSTS["input_cost_per_token"].isnull()) | |
& (~TOKEN_COSTS["output_cost_per_token"].isnull()) | |
& (TOKEN_COSTS["input_cost_per_token"] > 0) | |
& (TOKEN_COSTS["output_cost_per_token"] > 0) | |
] | |
TOKEN_COSTS["supports_vision"] = TOKEN_COSTS["supports_vision"].fillna(False) | |
# Convert USD costs to INR | |
TOKEN_COSTS["input_cost_per_token"] *= USD_TO_INR | |
TOKEN_COSTS["output_cost_per_token"] *= USD_TO_INR | |
def clean_names(s): | |
s = s.replace("_", " ").replace("ai", "AI") | |
return s[0].upper() + s[1:] | |
TOKEN_COSTS["litellm_provider"] = TOKEN_COSTS["litellm_provider"].apply(clean_names) | |
cmap = plt.get_cmap('RdYlGn_r') # Red-Yellow-Green colormap, reversed | |
def count_string_tokens(string: str, model: str) -> int: | |
try: | |
encoding = tiktoken.encoding_for_model(model.split('/')[-1]) | |
except: | |
if len(model.split('/')) > 1: | |
try: | |
encoding = tiktoken.encoding_for_model(model.split('/')[-2] + '/' + model.split('/')[-1]) | |
except KeyError: | |
print(f"Model {model} not found. Using cl100k_base encoding.") | |
encoding = tiktoken.get_encoding("cl100k_base") | |
else: | |
print(f"Model {model} not found. Using cl100k_base encoding.") | |
encoding = tiktoken.get_encoding("cl100k_base") | |
return len(encoding.encode(string)) | |
def calculate_total_cost(prompt_tokens: int, completion_tokens: int, model: str) -> float: | |
model_data = TOKEN_COSTS[TOKEN_COSTS['model'] == model].iloc[0] | |
prompt_cost = prompt_tokens * model_data['input_cost_per_token'] | |
completion_cost = completion_tokens * model_data['output_cost_per_token'] | |
return prompt_cost, completion_cost | |
def update_model_list(function_calling, litellm_provider, max_price, supports_vision, supports_max_input_tokens): | |
filtered_models = TOKEN_COSTS.loc[TOKEN_COSTS["max_input_tokens"] >= supports_max_input_tokens*1000] | |
if litellm_provider != "Any": | |
filtered_models = filtered_models[filtered_models['litellm_provider'] == litellm_provider] | |
if supports_vision: | |
filtered_models = filtered_models[filtered_models['supports_vision']] | |
list_models = filtered_models['model'].tolist() | |
return gr.Dropdown(choices=list_models, value=list_models[0] if list_models else "No model found for this combination!") | |
def compute_all(input_type, prompt_text, completion_text, prompt_tokens, completion_tokens, models): | |
results = [] | |
temp=prompt_tokens | |
temp2=completion_tokens | |
for model in models: | |
if input_type == "Text Input": | |
prompt_tokens = count_string_tokens(prompt_text, model) | |
completion_tokens = count_string_tokens(completion_text, model) | |
else: # Token Count Input | |
prompt_tokens= int(prompt_tokens * 1000) | |
completion_tokens = int(completion_tokens * 1000) | |
model_data = TOKEN_COSTS[TOKEN_COSTS['model'] == model].iloc[0] | |
prompt_cost, completion_cost = calculate_total_cost(prompt_tokens, completion_tokens, model) | |
total_cost = prompt_cost + completion_cost | |
results.append({ | |
"Model": model, | |
"Provider": model_data['litellm_provider'], | |
"Input Cost / M tokens": model_data['input_cost_per_token']*1e6, | |
"Output Cost / M tokens": model_data['output_cost_per_token']*1e6, | |
"Total Cost": round(total_cost, 2), | |
}) | |
prompt_tokens=temp | |
completion_tokens=temp2 | |
df = pd.DataFrame(results) | |
if len(df) > 1: | |
norm = plt.Normalize(df['Total Cost'].min(), df['Total Cost'].max()) | |
def get_color(val): | |
color = cmap(norm(val)) | |
return f'rgba({int(color[0]*255)}, {int(color[1]*255)}, {int(color[2]*255)}, 0.3)' | |
else: | |
def get_color(val): | |
return "rgba(0, 0, 0, 0)" | |
# Create the HTML table with animations | |
html_table = '<table class="styled-table">' | |
html_table += '<thead><tr>' | |
for col in df.columns: | |
html_table += f'<th>{col}</th>' | |
html_table += '</tr></thead><tbody>' | |
for i, row in df.iterrows(): | |
html_table += f'<tr class="animate-row" style="animation-delay: {i * 0.1}s;">' | |
for col in df.columns: | |
value = row[col] | |
if col == 'Total Cost': | |
color = get_color(value) | |
html_table += f'<td class="total-cost" style="background-color: {color};">βΉ{value:.2f}</td>' | |
elif col in ["Input Cost / M tokens", "Output Cost / M tokens"]: | |
html_table += f'<td>βΉ{value:.2f}</td>' | |
else: | |
html_table += f'<td>{value}</td>' | |
html_table += '</tr>' | |
html_table += '</tbody></table>' | |
return html_table | |
def toggle_input_visibility(choice): | |
return ( | |
gr.Group(visible=(choice == "Text Input")), | |
gr.Group(visible=(choice == "Token Count Input")) | |
) | |
with gr.Blocks(css=""" | |
.styled-table { | |
border-collapse: separate; | |
border-spacing: 0; | |
margin: 25px 0; | |
font-family: 'Segoe UI', Tahoma, Geneva, Verdana, sans-serif; | |
width: 100%; | |
box-shadow: 0 0 20px rgba(0, 0, 0, 0.1); | |
border-radius: 12px; | |
overflow: hidden; | |
background-color: #f8f9fa; | |
} | |
.styled-table thead tr { | |
background-color: #3a506b; | |
color: #ffffff; | |
text-align: left; | |
font-weight: bold; | |
} | |
.styled-table th, | |
.styled-table td { | |
padding: 14px 18px; | |
border-bottom: 1px solid #e0e0e0; | |
} | |
.styled-table tbody tr { | |
transition: all 0.3s ease; | |
} | |
.styled-table tbody tr:nth-of-type(even) { | |
background-color: #f0f4f8; | |
} | |
.styled-table tbody tr:last-of-type { | |
border-bottom: 2px solid #3a506b; | |
} | |
.styled-table tbody tr:hover { | |
background-color: #e3e8ef; | |
transform: scale(1.02); | |
box-shadow: 0 0 10px rgba(0, 0, 0, 0.1); | |
} | |
.total-cost { | |
font-weight: bold; | |
transition: all 0.3s ease; | |
color: #2c3e50; | |
} | |
.total-cost:hover { | |
transform: scale(1.1); | |
color: #e74c3c; | |
} | |
@keyframes fadeIn { | |
from { opacity: 0; transform: translateY(20px); } | |
to { opacity: 1; transform: translateY(0); } | |
} | |
.animate-row { | |
animation: fadeIn 0.5s ease-out forwards; | |
opacity: 0; | |
} | |
.styled-table tbody tr td { | |
color: #34495e; | |
} | |
.styled-table tbody tr:hover td { | |
color: #2c3e50; | |
} | |
""", theme=gr.themes.Soft(primary_hue=gr.themes.colors.blue, secondary_hue=gr.themes.colors.slate)) as demo: | |
gr.Markdown(""" | |
# π° Text-to-Rupees: Get the price of your LLM API calls in INR! π° | |
Based on prices data from [BerriAI's litellm](https://github.com/BerriAI/litellm/blob/main/model_prices_and_context_window.json). | |
Prices converted to INR (1 USD = 84 INR). | |
""") | |
with gr.Row(): | |
with gr.Column(): | |
gr.Markdown("## Input type:") | |
input_type = gr.Radio(["Text Input", "Token Count Input"], label="Input Type", value="Text Input") | |
with gr.Group() as text_input_group: | |
prompt_text = gr.Textbox(label="Prompt", value="Tell me a joke about AI.", lines=3) | |
completion_text = gr.Textbox(label="Completion", value="Certainly: Why did the neural network go to therapy? It had too many deep issues!", lines=3) | |
with gr.Group(visible=False) as token_input_group: | |
prompt_tokens_input = gr.Number(label="Prompt Tokens (thousands)", value=1.5) | |
completion_tokens_input = gr.Number(label="Completion Tokens (thousands)", value=2) | |
with gr.Column(): | |
gr.Markdown("## Model choice:") | |
with gr.Row(): | |
with gr.Column(): | |
function_calling = gr.Checkbox(label="Supports Tool Calling", value=False) | |
supports_vision = gr.Checkbox(label="Supports Vision", value=False) | |
with gr.Column(): | |
supports_max_input_tokens = gr.Slider(label="Min Supported Input Length (thousands)", minimum=2, maximum=256, step=2, value=2) | |
max_price = gr.Slider(label="Max Price per Input Token", minimum=0, maximum=0.084, step=0.00084, value=0.084, visible=False, interactive=False) | |
litellm_provider = gr.Dropdown(label="Inference Provider", choices=["Any"] + TOKEN_COSTS['litellm_provider'].unique().tolist(), value="Any") | |
model = gr.Dropdown(label="Models (at least 1)", choices=TOKEN_COSTS['model'].tolist(), value=["anyscale/meta-llama/Meta-Llama-3-8B-Instruct", "gpt-4o", "claude-3-sonnet-20240229"], multiselect=True) | |
gr.Markdown("## Resulting Costs π") | |
with gr.Row(): | |
results_table = gr.HTML() | |
input_type.change( | |
toggle_input_visibility, | |
inputs=[input_type], | |
outputs=[text_input_group, token_input_group] | |
) | |
gr.on( | |
triggers=[function_calling.change, litellm_provider.change, max_price.change, supports_vision.change, supports_max_input_tokens.change], | |
fn=update_model_list, | |
inputs=[function_calling, litellm_provider, max_price, supports_vision, supports_max_input_tokens], | |
outputs=model, | |
) | |
gr.on( | |
triggers=[ | |
input_type.change, | |
prompt_text.change, | |
completion_text.change, | |
prompt_tokens_input.change, | |
completion_tokens_input.change, | |
function_calling.change, | |
litellm_provider.change, | |
supports_vision.change, | |
supports_max_input_tokens.change, | |
model.change | |
], | |
fn=compute_all, | |
inputs=[ | |
input_type, | |
prompt_text, | |
completion_text, | |
prompt_tokens_input, | |
completion_tokens_input, | |
model | |
], | |
outputs=results_table | |
) | |
# Load results on page load | |
demo.load( | |
fn=compute_all, | |
inputs=[ | |
input_type, | |
prompt_text, | |
completion_text, | |
prompt_tokens_input, | |
completion_tokens_input, | |
model | |
], | |
outputs=results_table | |
) | |
if __name__ == "__main__": | |
demo.launch() |