aisafe commited on
Commit
664587a
·
verified ·
1 Parent(s): fb0af4b

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +71 -28
app.py CHANGED
@@ -1,32 +1,75 @@
 
1
  import streamlit as st
2
- import plotly.graph_objects as go
3
- from transformers import pipeline
4
- import re
5
- import time
6
- import requests
7
  from PIL import Image
8
- import itertools
9
- import numpy as np
10
- import matplotlib.pyplot as plt
11
- from matplotlib.colors import rgb2hex
12
- import matplotlib
13
- from matplotlib.colors import ListedColormap, rgb2hex
14
- import ipywidgets as widgets
15
- from IPython.display import display, HTML
16
- import re
17
- import pandas as pd
18
- from pprint import pprint
19
- from tenacity import retry
20
- from tqdm import tqdm
21
- import tiktoken
22
- import scipy.stats
 
 
 
 
 
 
 
23
  import torch
24
- from transformers import GPT2LMHeadModel
25
- import tiktoken
26
- import seaborn as sns
27
- from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
28
- # from colorama import Fore, Style
29
- import openai # for OpenAI API calls
30
 
31
- import streamlit as st
32
- st.image('image.png', caption='Traditional Taxtual Entailment vs Factual Entailment')
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+
2
  import streamlit as st
 
 
 
 
 
3
  from PIL import Image
4
+ import spacy
5
+ import streamlit as st
6
+ from streamlit_pdf_viewer import pdf_viewer
7
+
8
+
9
+
10
+ st.set_page_config(page_title="FACTOID: FACtual enTailment fOr hallucInation Detection", layout="wide")
11
+ st.title('Welcome to :blue[FACTOID] ')
12
+
13
+ st.header('FACTOID: FACtual enTailment fOr hallucInation Detection :blue[Web Demo]')
14
+ #image = Image.open('image.png')
15
+ #st.image(image, caption='Traditional Entailment vs Factual Entailment')
16
+ pdf_viewer(input="fac.pdf", width=700)
17
+
18
+ # List of sentences
19
+ sentence1 = [f"U.S. President Barack Obama declared that the U.S. will refrain from deploying troops in Ukraine."]
20
+ sentence2 = [f"Joe Biden said we’d not send U.S. troops to fight Russian troops in Ukraine, but we would provide robust military assistance and try to unify the Western world against Russia’s aggression."]
21
+ # Create a dropdown menu
22
+ selected_sentence1 = st.selectbox("Select first sentence:", sentence1)
23
+ selected_sentence2 = st.selectbox("Select first sentence:", sentence2)
24
+
25
+ from transformers import AutoTokenizer, AutoModelForSequenceClassification
26
  import torch
27
+ device = torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu")
 
 
 
 
 
28
 
29
+ model_name = "MoritzLaurer/mDeBERTa-v3-base-xnli-multilingual-nli-2mil7"
30
+ tokenizer = AutoTokenizer.from_pretrained(model_name,use_fast=False)
31
+ model = AutoModelForSequenceClassification.from_pretrained(model_name)
32
+
33
+
34
+ premise = selected_sentence1
35
+ hypothesis = selected_sentence2
36
+ input = tokenizer(premise, hypothesis, truncation=True, return_tensors="pt")
37
+ output = model(input["input_ids"].to(device)) # device = "cuda:0" or "cpu"
38
+ prediction = torch.softmax(output["logits"][0], -1).tolist()
39
+ label_names = ["support", "neutral", "refute"]
40
+ prediction = {name: float(pred) for pred, name in zip(prediction, label_names)}
41
+ highest_label = max(prediction, key=prediction.get)
42
+
43
+
44
+ from transformers import pipeline
45
+ pipe = pipeline("text-classification",model="sileod/deberta-v3-base-tasksource-nli")
46
+ labels=pipe([dict(text=selected_sentence1,
47
+ text_pair=selected_sentence2)])
48
+
49
+
50
+ import en_core_web_sm
51
+
52
+
53
+ def extract_person_names(sentence):
54
+ nlp = spacy.load("en_core_web_sm")
55
+ doc = nlp(sentence)
56
+ person_names = [entity.text for entity in doc.ents if entity.label_ == 'PERSON']
57
+
58
+ return person_names[0]
59
+
60
+ person_name1 = extract_person_names(selected_sentence1)
61
+ person_name2 = extract_person_names(selected_sentence2)
62
+
63
+
64
+ col1, col2 = st.columns(2)
65
+
66
+ with col1:
67
+ st.write("Without Factual Entailment.")
68
+ st.write("Textual Entailment Model:\n",highest_label)
69
+
70
+ with col2:
71
+ st.write("With Factual Entailment:")
72
+ st.write("Textual Entailment Model:\n",labels[0]['label'])
73
+ st.write("Span Detection Model:\n")
74
+ st.write(f"{person_name1}::{person_name2}")
75
+